DINOFLAGELADOS DEL FITOPLANCTON DEL GOLFO DE GUAYAQUIL

II EDICION
2nd. EDITION
Por:
FLOR PESANTES S. (1)

RESUMEN

La primera edición de este catálogo (Pesantes, 1978), contiene los estudios taxonómicos de 103 especies de dinoflagelados, basados en trabajos publicados hasta 1975. En esta segunda edición aparecen los cambios de nomenclatura de las especies de acuerdo a nuevos estudios realizados a partir de $1976-1980$.

Para este estudio las muestras de fitoplancton fueron colectadas en superficie a bordo del BAE "ORION" del Instituto Oceanográfico de la Armada en los meses de Diciembre 1972, Febrero, Mayo y Agosto de 1973, dentro del plan quinquenal 1971-1975 de investigaciones oceanográficas.

Se analizaron 44 muestras de plancton identificándose 103 especies y variedades de Dinoflagelados. La mayoría de las especies son registradas por primera vez para el mar ecuatoríano. El análisis sistemático de las especies incluye: descripción, dibujos, medidas y referencias bibliográficas.

Abstract

The first edition of this catalogue (Pesantes, 1978), includes the taxonomical studies of 103 species of dinoflagellates, supported in the literature published until 1975. In this second edition appeared a new nomenclature of the species in accordance with new studies to carry out between the years $1976-1980$.

Phytoplankton samples were collected aboard BAE "ORION" of the Oceanographic Institute of Ecuatorian Navy during the years $1972-1973$, int the Gulf of Guayaquil.

44 surface plankton samples were analyzed and 103 species and varieties of Dinoflagellates were identified. Most of the species are reconded for the first time in Ecuadonian waters. The systematic analysis of the species includes original drawings, measures and literary references.

INTRODUCCION

Los Dinoflagelados constituyen uno de los grupos más importantes del fitoplancton marino y por lo tanto determinan directa o indirectamente la fertilidad del mar. Los Dinoflagelados presentan frente a determinados parámetros del medio, como Temperatura y Salinidad una gran sensibilidad, por lo cual son considerados como buenos indicadores biológicos de masas de agua. El objetivo de este trabajo es iniciar el estudio sistemático de los Dinoflagelados del Golfo de Guayaquil, siendo ésta una de las primeras investigaciones realizadas en esta área bajo este aspecto, lo cual complementa el trabajo de Jiménez (1976) en sistemática de Diatomeas y Silicoflagelados para la misma área de estudio.

La bibliografía referente a Dinoflagelados en aguas ecuatorianas es muy escasa existiendo para el Paci-
fico Sur-Oriental los trabajos de Graham (1942) y Graham y Bronikovsky (1944) en los cuales se analiza el material colectado por la expedición del Carnegie, que incluye estaciones ubicadas entre las Islas Galápagos hacia el Este, a la altura de los 0° Latitud y $80^{\circ} \mathrm{W}$.

En los trabajos anteriormente mencionados se describe la taxonomía y distribución de algunas especies de Ceratium y Peridinium. Estas investigaciones no incluyen lás áreas del Golfo de Guayaquil. Posteriormente las investigaciones del fitoplancton del Golfo se han realizado sobre aspectos de las variaciones estacionales de sus principales componentes con el trabajo de Jiménez (1975) y la distribución de los pig. mentos clorofíicos en el Golfo de Guayaquil con el trabajo de Peribonio (1975). El presente trabajo se llevó a cabo con el auspicio del Instituto Oceanográfico de la Armada del Ecuador, mediante las colecciones de muestras de fitoplancton marino, realizadas a bordo del BAE "ORION" en cruceros costeros y oceánicos, que llevó a cabo según el plan quinquenal de investigaciones oceanográficas 1971-1975.

AREA ESTUDIADA

El Golfo de Guayaquil recibe el aporte de agua dulce del Río Guayas cuyos mayores tributarios son los rios Daule y Babahoyo. La plataforma del Golfo de Guayaquil tiene una base de 200 Km . sobre el meridiano $81^{\circ} \mathrm{W}$ y 120 Km . incluyendo la Isla Puná (Miró et al, 1976). La profundidad media es de unos $65-70$ m en el centro, aumentando hacia el Oeste; la isóbata de 180 m se considera el borde externo de la plataforma continental, el talud presenta una pendiente de $4^{\circ} 17^{\prime}$ alcanzando la profundidad máxima de 3600 m en la fosa Puná-Chile frente al Golfo (Jiménez, 1976). El mismo autor, para su estudio, divide al Golfo de Guayaquil en dos secciones: estuario interior y estuario exterior, las mismas que son consideradas en este trabajo.

La temperatura superficial del agua que se registró en las estaciones ubicadas en el Golfo de Guayaquil fueron: Diciembre/73: $25.52^{\circ} \mathrm{C}$, Febrero/73: $25.8^{\circ} \mathrm{C}$, Mayo/73: $23.10^{\circ} \mathrm{C}$ y Agosto/73: $17.2^{\circ} \mathrm{C}$.

Materiales y metodos

Las especies descritas en el presente trabajo se encontraron en 44 muestras de fitoplancton superficial recolectadas en los meses de Diciembre de 1972 hasta Agosto de 1973 a bordo del BAE "ORION", para lo cual se utilizó una red que tiene una boca de 40 cm . de diámetro, una longitud total de $1 . \mathrm{m}$. y una malla filtrante (nylon) de 55μ de poro, las muestras fueron fijadas con formalina neutralizada con bórax. Las estaciones seleccionadas para este trabajo están ubicadas en el Golfo de Guayaquil (fig. No. 1). El estudio taxonómico de las especies se hizo usando un microscopio binocular Zeiss Standard con ocular micrométrico, los dibujos de los dinoflagelados se hicieron con cámara clara y tomándose diferentes medidas tales como: la.longitud total (L); transdiámetro (trd); longitud de los cuernos antapicales, longitud de las espinas antapicales. En el caso de los dinoflagelados del género Dinophysis se considera la longitud total del cuerpo (L); espesor de la epiteca (e); espesor de la hipoteca (E), separación de $R_{1}-R_{2}$ y $R_{2}-R_{3}$. Para mayor información sobre las mediciones de los dinoflagelados pueden consultarse los trabajos de: Balech (1951), López (1966). Para la destrucción del contenido celular y para el estudio tabular se utilizó hipoclorito de sodio.

Pafa la identificación de las distintas especies se siguieron los trabajos sistemáticos de: Graham (1942); Graham y Bronikovsky (1944); Wood (1954 y 1968); Balech (1962 y 1974); Subrahmanyan (1968); Steidinger y Williams (1970). La clave que figura en el presente trabajo, se basó en la de Massuti y Margalef (1950) a la que se añadieron los géneros representados en este trabajo.

MORFOLOGIA DE LOS DINOFLAGELADOS

Los dinoflagelados son organismos unicelulares, uninucleados; de forma más o menos ovoide o bicónica, presentan dos surcos: uno transversal el "cingulum" que rodea al cuerpo como una cintura ecuatorial; el otro, surco longitudinal 'sulcus", el cual sale de la parte media del cuerpo y sólo llega al extremo posterior. La cara en la que está el sulcus, que es la de emergencia de los flagelos se la llama ventral. En las células des-
nudas la parte que queda por delante del cingulum se llama epicono y la posterior hipocono, pero lo más frecuente es que las células estén envueltas en una teca o caparazón celulósica en cuyo caso los nombres se transforman en epiteca e hipoteca respectivamente, estas tecas están formadas por placas tanto en el cingulum como en el sulcus.

Tienen dos flagelos: uno transversal que es acintado y se aloja en el cingulum y el otro en el sulcus, se extiende hacia atrás y es filiforme. El núcleo (dinocarion) es grande y con cromatina en cordones moniliformes.

Poseen dos vacuolos no pulsátiles (púsula) que desembocan en el entrecruzamiento cingular-sulcal.
A veces tienen estigma y en algunos géneros un ocelo bien desarrollado, este ocelo puede estar constituido por un corpúsculo externo biconvexo refringente (lente o cristalino), detrás del cual hay una masa pigmentaria rojiza recubierta por un pigmento negruzco (melanosoma).

Muchos dinoflagelados tienen tricocistos y en algunos hay nematocistos.
Algunos dinoflagelados son autótrofos, con cromatóforos pardo-amarillentos y otros son alótrofos. Los alótrofos pueden alimentarse por sustancias orgánicas disueltas por consumo de uItraplancton (bacterias).

SISTEMATICA

Los dinoflagelados pertenecen a la clase Dinophyceae dentro de la división Chromophyta.

CLAVE

CLAVE CON LAS CARACTERISTICAS DE LOS GENEROS DE LOS DINOFLAGELADOS DEL PLANCTON DEL GOLFO DE GUAYAQUIL

1. Célula con dos valvas longitudinales; elipsoidal . Exuviaella.

- Célula con una espina alada en el extremo anterior . Prorocentrum.

2. Células de forma Ienticular, cubierta formada por una sola pieza. Ptychodiscus.

- Cubierta rigida dividida en numerosas placas . Pyrophacus.

3. Células provistas de 2 valvas; cuerpo aplanado lateralmente; cingulum y sulcus con membranas hialinas. Epiteca generalmente sobre el ala cingular anterior . Dinophysis.
4. Células globosas; aleta cingular anterior de forma de embudo, la posterior formando una gran cámara; ambas aletas sostenidas por varillas de refuerzo; aleta sulcal izquierda ancha extendiéndose hacia la parte posterior del cuerpo . Ornithocercus.

Células alargadas y fusiformes con un proceso terminal. Amphisolenia.
5. Célula piriforme; hipoteca provista de dos espinas aladas; surco transversal no definido. . . . Podolampas.

- Célula esférica; hipoteca presentando dos alas, pero sin espinas. Blepharocysia.

6. Células de formas diversas con cuemos en número de 0-1 en la epiteca y de $1-3$ en la hipoteca. Surco transversal limitado por dos expansiones laminares que sobresalen de la célula. Ceratium.

- Células ovales; surco transversal ubicado en la parte media de la célula. Paredes cubiertas por una reticulación que enmascara completamente la tabulación

Protoceratium.
7. Células de epiteca plana, hipoteca con espinas aladas más o menos largas; teca gruesa y esculpida; rebordes del surco transversal muy desarrollados

Ceratocorys.

- Epiteca cónica, hipoteca terminada en aguijón: rebordes del surco transversal reducidos

Oxytoxum.
8. Célula redondeada o aguda posteriormente o con espinas macizas, pero sin cuernos. Surco longitudinal largo extendiéndose sobre la epiteca; surco transversal generalmente helicoidal y levógiro .

- Células globosas o poliédricas, con placas esculpidas y sin espinas; surco longitudinal limitado a la hipoteca o formando una ligera escotadura sobre la epiteca; surco transversal levógiro.

Goniodoma.
9. Célula lenticular, aplanada anteroposteriormente o redonda, área sulcal posterior con una membrana hialina ancha y curvada. Placa la. desplazada hacia el lado izquierdo de la célula, 6precingularea y dos placas antapicales. Diplopelta. - Células de formas muy variadas. Placa la. nunca muy desplazada. Dos placas antapicales y de dos a cinco apicales. Surco transversal dextrógiro o levógiro

Protoperidinium.

Género AMPHISOLENIA Stein Amphisolenia bidentata Schröder, 1900
Lám. I, figs. 1 - 6

Schröder, 1900; Abé, 1927, p. 111, fig. 42a-k; Wood, 1968, p. 18, fig. 19
Célula alargada y fusiforme. Epiteca ligeramente convexa y de menor tamaño que la hipoteca, esta última ancha hacia la mitad del cuerpo para luego estrecharse en la región antapical, región en la cual se curva por el lado derecho, formando el pie el cual lleva en su extremo libre dos espinas antapicales.

Dimensión: L: $705-742 \mu$.
Dístribución: Es una de las especies más comunes y de amplia distribución en mares tropicales, subtropicales y cálidos (Abé, 1927). Cosmopolita de aguas templadas y cálidas (Margalef, 1961). Frecuente en todos los mares cálidos (Balech, 1977).

Género BLEPHAROCYSTA Ehrenberg Blepharocysta splendor-maris (Ehrenberg) Lám. II, fig. 6

Ehrenberg, 1873; Balech, 1963, pp. 16-19, lám. III, figs. 34-44, Wood, 1963 a, p. 51, fig. 188 ; Abé, 1966, pp. 141-143, figs. 21-32.

Célula globosa, de paredes alveoladas. La región apical presenta un poro visible. La separación de placas se observa muy marcada. Esta especie presenta dos aletas sulcales las cuales sobresalen por la región antapical, Especie muy bien estudiada por Balech, 1963).

Dimensiones: L: 61μ trd: 49μ.
Distribución: Cosmopolita de aguas templadas y calidas (Margalef, 1961).

Género CERATIUM Schrank
 Ceratium azoricum Cleve, 1900

Lám. II, figs. 4-5
Cleve, 1900 a, p. 13, pl. 7, figs. 6-7; Wood, 1954, pp. 295-296, fig. 222 a, b; Orellana, 197 I , pp, 62-63, lám. XIV, fig. 2; Hermosilla, 1973, pp. 67-68, lám. 36, figs. 1-4.

Célula pequeña, pared con poros pequeños; cuerno apical corto y provisto de membrana desde la base hasta el extremo; cingulum plano o excavado; epiteca redondeada; hipoteca de base convexa de la cual parten dos cuernos antapicales que se dirigen paralelos o convergentes con el cuerno apical, el derecho de menor tamaño que el izquierdo y nace detrás del surco transversal, mientras que el izquierdo nace posterior al cingulum mostrando una profunda concavidad en su base.

Dimensiones: trd: 42μ; antapical der: $46-53 \mu$; antapical iz: $61-65 \mu$; separación de los antapicales en el extremo: $57-65 \mu$
Distribucion: C. azoricum es una especie tropical muy tolerante (Graham y Bronikovsky, 1944). Wood (1954) considera a esta especie de aguas cálidas. Especie cosmopolita de aguas templadas y cálidas (Margalef, 1961). Sournia (1967 b), la considera una especie tropical o subtropical, representada esporádicamente en todas las latitudes temperadas y muy raramente en latitudes bajas, distribución vertical incierta.

Ceratium breve var. breve (Ostenfeld and Schmidt) Schröder, 1906
 Lám. III, figs. 3-4

Schröder, 1906, p. 358; Subrahmanyan, 1968, p. 40-41, pl. III, figs. 13-15, text-figs. 62-63; Wood, 1968, p. 24, fig. 42; Taylor, 1976, p. 80, figs. 141-142.

Célula de cuernos antapicales contos. Epiteca de menor tamaño que hipoteca y con el contor . no derecho convexo. Hipoteca con antapicales gruesos, el cuerno posterior derecho se curva moderadamente hacia el cuerpo. Célula presentando poros eti sus paredes.

Dimensiones: trd: 55μ; antapical der: 53μ; antapical $\mathrm{iz}: 68 \mu$; separación de los antapicales en el extremo: 114μ.
Distribución: Especie tropical intolerante (Graham y Bronikovsky, 1944). Forma de los océanos de aguas callidas (Subrahmanyan, 1968).

Ceratium candelabrum var. depressum (Pouchet) Jörgensen, 1920

Lám. II, figs. 1-3

Pouchet, 1883, p. 417, vix pl. 18, fig. la-b; Schiller, 1937, p. 336, fig. 403; Wood, 1954,p. 273, fig. 187b; Sournia, 1967b, p. 394, fig. 17.

Célula de cuerpo ancho; cuerno apical largo y ligeramente curvado en su base; epiteca cónica; hipoteca baja; antapicales largos dirigidos hacia atrás, divergentes; longitud del antapical izquierdo mayor que el derecho y que el diámetro cingular.

Dimensiones: trd: 76μ; surco-cuerno antapical der: 49-53 μ; surco-cuemo antapical iz: 87μ; separación de los antapicales en el extremo: 87μ.
Distribucion: Especie tropical ligeramente tolerante, no está limitada a aguas cálidas (Graham y Bronikovsky, 1944).

Ceratium carriense Gourret, 1883
 Lám. III, fig. 5

Gourret, 1883, pl. 4, (fig. 57); Schiller, 1937, pp. 425-426, fig. $464 \mathrm{a}, \mathrm{b}$; Graham y Bronikovsky, 1944, pp. 39-40, fig. 22A, mapa 40; Subrahmanyan, 1968, pp. 77-78 (pl. VII, fig. 36; textfigs. 143-144); Taylor 1976, p. 69, pl. 20, fig. 200.

Célula de cuernos muy largos. Cuerno apical recto. Epiteca de lado izquierdo más convexo que el derecho. Hipoteca con dos cuemos antapicales curvados lateralmente, muy divergentes y presentando espinas en sus bordes inferiores, el antapical izquierdo se dirige primero hacia atrás antes de curvarse lateralmente, el antapical derecho forma con el cuemo apical un ángulo obtuso. Esta especie presenta los cuernos antapicales de mayor longitud que C. massiliense.

Dimensiones: trd: 42μ; antapical $\mathrm{iz}: 1.178 \mu$; antapical der: 1.231μ; separación de los antapicales en el extremo: 1.786μ.
Distribución: Cosmopolita de aguas templadas y cálidas (Margalef, 1961). Forma común en todos los mares de aguas cálidas (Subrahmanyan, 1968).

Ceratium contortum var. karstenii (Pavillard) Sournia, 1966
Lám. IV, figs. 2-3 y Lám. V, figs. 3-4

Pavillard, 1907, p. 152 y 1923, p. 514; Jörgensen, 1911, pl. 6, fig. 118; Sournia, 1967 b, p. 442-444, fig. 71, pl. III, fig. 10; Orellana, 1971, p. 66, lám. XV, fig. 1; Taylor, 1976, p. 81-82, pl. 18, fig. 184.

Epiteca casi triangular, cuerno apical ligeramente curvado, inclinándose en la base hacia el lado izquierdo; ambos antapicales curvados hacia adelante y casi paralelos al cuerno apical, el antapical izquierdo un poco más curvado que el derecho. En algunos organismos se observó en el cuerno apical una membrana hialina ubicada a ambos lados, presentando además unas gruesas membranas en los lados cóncavos de los antapicales.

Dimensiones: trd: $80-100 \mu$; antapical der: $190-247 \mu$; antapical iz: $213-255 \mu$; separación de los antapicales en el extremo: 232-247 μ.
Distribución: Especie encontrada en un gran número de estaciones ubicadas en el área interior, central y extema del Golfo de Guayaquil.

Ceratium declinatum Karsten, 1907
Lám. IV, figs. 4-5

Karsten, 1907, pl. 48, fig. 2a-b; Schiller, 1937, p. 404, fig. 445 a-d; Wood, 1954, p. 293 , fig. $218 \mathrm{a}-\mathrm{c}$; Wood, 1968 , p. 27, fig. 50 ; Taylor, 1976 , p. 82 , pl. 16, figs. $163,164,166,167$.

Célula de tamaño mediano; cuerpo aplanado, cuerno apical recto, epiteca de base convexa, más pronunciada en el lado derecho; hipoteca de base redondeada y más corta que la epiteca; cingulum poco desarrollado en el lado derecho. Antapicales curvados en la base y luego colocándose casi paralelos al cuerno apical, el antapical derecho más largo y más delgado que el izquierdo.

Dimensiones: trd: 38μ; antapical der: $64-72 \mu$; antapical iz: $61-68 \mu$; separación de los antapicales en el extremo: 114-122 μ.
Distribución: Especie tropical ligeramente tolerante (Graham y Bronikovsky, 1944). Para Margalef, (1961) es una especie cosmopolita de aguas cálidas. Especie tropical, inter-oceánica (Wood, 1968).

Ceratium deflexum (Kofoid) Jörgensen, 1911
 $$
\text { Lám. IV, fig. } 1
$$

Jörgensen, 1911 , p. 64, figs. 138-139; Schiller, 1937, p. 428, fig. $467 \mathrm{a}-\mathrm{b}$; Wood, 1954, p. 310, fig. 237; Soumia, 1967 b, pp. $464-465$, fig. 86; Taylor, 1976 , p. 70 , figs. $214,215,219$.

Célula de cuerno apical largo y recto; los cuemos antapicales parten primero hacia atrás y luego se curvan hacia adelante casi paralelos al cuemo apical, estos presentan sus bases ligeramente dentadas.

Dimensiones: trd: 57-87 μ; antapical der: 182-247 μ; antapical iz: 209-269 μ; separación de los antapicales en el extremo: 235-277 μ.
Distribución: C. deflexum es una especie tropical intolerante probablemente restringida a los océanos Pacífico e Indico (Graham y Bronikovsky, 1944). Especie tropical rara (Wood, 1954). Especie tropical de superficie, indiferentemente oceánica y nerítica (Soumia, 1967 b). Segín (Wood, 1968) especie rara de aguas cálidas en los océanos Indico y Pacífico.

Ceratium euarcuatum Jörgensen, 1920
 Lám. V, figs. 1-2

Jörgensen, 1920, p. 56, fig. 54; Wood, 1954, p. 294, fig. 220 a, b; Wood, 1968, p. 28, fig.

53; Taylor, 1976, p. 83, pl. 15, figs. $155,157,159$.
Célula de tamaño mediano, cuerno apical recto; epiteca casi triangular; hipoteca de base redonda que se continúa con los cuemos antapicales, el derecho curvado desde la región cingular hacia adelante y colocándose casi recto al cuerno apical; el izquierdo curvándose desde la base y convergiendo hacia el cuemo apical.

Dimensiones: trd: 49μ; antapical der: 87μ; antapical iz: 87μ; separación de los cuemos en el extremo: 118μ.
Distribución: Graham y Bronikovsky, (1944) la clasifica como una especie tropical intolerante. Wood (1954) considera que C. euarcuatum es especie oceánica de aguas cálidas. Según Margalef, (1961) esta es una especie cosmopolita de aguas cálidas.

Ceratium extensum (Gourret) Cleve, 1901
Lám. VI, fig. 9

Cleve, 1901, p. 215; López, 1966, p. 331, fig. 12; Wood, 1968, p. 28, fig. 54.
Célula de gran tamaño, fusiforme. Epiteca de longitud menor que la hipoteca, formando un cuemo apical largo y recto; la hipoteca se caracteriza por presentar el cuerno antapical izquierdo fino y recto, antapical derecho ausente. Cingulum excavado. Esta especie se parece a C. fusus de la cual se diferencia por ser de mayor tamafio.

Dimensiones: trd: 23μ 1.ep: 418μ; 1.hip: 1041μ.
Distribución: Especie de amplia distribución, forma tropical muy tolerante (Graham y Bronikovsky, 1944). Cosmopolita de aguas templadas y cálidas (Margalef, 1961). Especie tropical o subtropical, común en los tres océanos y en el Mediterráneo. Eufótica (Sournia, 1967b). Especie oceánica tropical generalmente escasa (Wood, 1968).

Ceratium falcatiforme Jörgensen, 1920
Lám. VII, figs. 1-3

Jōrgensen, 1920, p. 40 fig. 29; Schiller, 1937, p. 338, fig. 417 b; Balech, 1962 c, pp. 181-182, lám. XXV, fig. 387; Wood, 1968, p. 28, fig. 55; Taylor, 1976, p. 65, pl. 13, figs. 138-139.

Célula de tamaño pequefio. Epiteca ancha sobre el cingulum la cual se adelgaza gradualmente y forma el cuerno apical el que se curva hacia el lado izquierdo. Hipoteca presentando el cuemo antapical izquierdo gradualmente curvado hacia el mismo lado, formando así una curvatura distinta a C. falcatum característica ésta que permite diferenciarlos, algunos ejemplares no presentaron el antapical derecho, en otros era apenas visible y en unos pocos el antapical derecho tenía una longitud de 27μ y terminaba en punta.

Dimensiones: trd: 23μ; 1.ep: $156-163 \mu$; 1.hip: 125-129 μ; 1.total 285-289 μ
Distribución: Especie interoceánica de aguas cálidas (Wood, 1954). Cosmopolita de aguas cálidas (Margalef, 1961).

Ceratium falcatum (Kofoid) Jörgensen, 1920
Lám. VI, figs. 1-2
Jörgensen, 1920; Schiller, 1937, p. 377, fig. 417 a; Graham y Bronikovsky, 1944, p. 24, figs. 11 w AA; Soumia, 1967b, p.414, fig. 38; Taylor, 1976, p. 65, pl. 13, fig. 133.

Célula de tamaño más grande que C. folcatiforme; epiteca formando un cuerno apical ligeramente
curvado el cual presenta en su borde izquierdo una cresta hiatina que viene a engrosarlo. Hipoteca provista de dos cuernos antapicales, el antapical izquierdo, antes de llegar al extremo, se curva hacia el lado izquierdo; el antapical derecho muy pequeño de extremo agudo. Epiteca ligeramente mayor que la hipoteca.

Dimensiones: trd: 19μ; 1.ep: $232-239 \mu$; 1 hip: $193-201 \mu ; 1$. antapical der: 22μ; 1 . total: $430-$ 445μ.
Distribución: Es una especie tropical intolerante (Graham y Bronikovsky, 1944). C. falcatum y C.' falcatiforme son consideradas por Nielsen (1934) como especies de superficie (en Graham y Bronikovsky, 1944). Forma interoceánica de aguas cálidas (Wood, 1954). Cosmopolita de aguas câlidas (Margalef, 1961).

Ceratium furca var. furca (Ehrenberg) Claparade et Lachmann
Lám. VIII, figs. 1 - 3

Schiller, 1937, p. 367, fig. 404 a-c; López, 1966, p. 417-419, figs. 2-3; Wood, 1954, p. 274-275, fig. 189 a; Sournia, 1967b, p.396-397, fig. 20; Taylor, 1976, p. 60, pl. 12, fig. 109.

Célula presentando en sus paredes estrías longitudinales; epiteca de base cónica que se prolonga en el cuerno apical, antapicales gruesos dirigidos hacia atrás y paralelos entre sí, el izquierdo de mayor tamaño que el derecho, provistos de pequeñas espinas. Cingulum excavado. Estas células pueden presentarse formando cadenas.

Dimensiones: trd: 30μ; antapical der: $46-53 \mu$; antapical iz: $95-99 \mu$; separación de los antapicales en el extremo: 26μ.
Distribución: Especie ampliamente distribuida, abundante en aguas temperadas y frías (Schiller, 1937). Variedad psicrófila probablemente cosmopolita (Sournia, 1967b).Especie de aguas temperadas (Taylor, 1976).

Ceratium furca var. eugrammun (Ehrenberg) Schiller, 1937
Lám. VIII, figs. 4-5

Ehrenberg, 1860 , p. 792 y 1873, p. 3, pl. 1, fig. 4; Schiller, 1937, p. 368, figs. 405 a-d; Woad, 1954, p. 275 , fig. 189 b-c; Sournia, 1967 b, p. 398, fig. 18; Taylor, 1976, p. 60-61, figs. 107-108.

Célula más pequeña que la especie anterior, cuerpo robusto; epiteca estrechándose ligeramente para formar el cuerno apical; antapicales cortos, el derecho de menor longitud que el izquierdo, ambos desprovistos de espinas.

Dimensiones: trd: 34μ; antapical der: 34μ; antapical iz: 65μ; separación de los antapicales en el extremo: 19μ.
Distribución: Especie de aguas cálidas en todos los océanos, nerítica (Jörgensen, 1911; citado en Wood, 1954). Variedad termófila (Sournia, 1967 b).

Ceratium fusus (Ehrengerg) Dujardin, 1841
Lám. VI, figs. 3-7
(Ehrenberg) Dujardin, 1841; Sournia, 1967 b. pp. 408-409, fig. 32; Subrahmanyan, 1968, pp. 3132, text-fig. 55; pl. 1, figs. 3-6.

Célula de epiteca cónica que se estrecha gradualmente para formar el cuemo apical largo y fino. Epiteca de mayor longitud que la hipoteca. Antapical izquierdo ligeramente curvado, en algunos ejemplares se observó que este cuemo se engrosaba por su borde izquierdo por una membrana y que tanto los bordes
izquierdo y derecho del mismo cuemo se presentaban serrados; antapical derecho ausente en unos ejemplares y pequeño en otros.

Dimensiones: L; 270-784 μ; trd: 19-23 μ; 1.ep: 217-418 μ; 1.hip: $266-361 \mu$; surco-cuemo antap. der: $23-38 \mu$.
Distribución: Los ejemplares del Golfo de Guayaquil presentaban una gran variedad en cuanto a dimensiones pero de formas generalmente constantes. Sin embargo en el preseñte trabajo todas las especies encontradas las incluyo dentro de C. fusus debido a que la forma y caracteres de estos ejemplares coinciden con las descripciones dadas por Subrahmanyan (1968) y Wood (1968).

Dentro de esta especie han sido consideradas algunas variedades, sin embargo autores como Nielsen consideran que todas estas especies representan un genotipo, el cual es modificado en cuanto a su tamaño por condiciones ecológicas y su dato para el Pacífico Sur muestra un incremento en tamaño bajo condiciones neríticas (en Graham y Bronikovskoy, 1944).

Subrahmanyan (1968) no considera variedades dentro de la especie en mención y es así como agrupa a todos sus ejemplares estudiados dentro de C. fusus.

Creo que la inclusión de estas diferentes formas dentro de C. fusus no debiera ser definitiva y que sería necesario realizar un estudio en cuanto a su tabulación y otros caracteres taxonómicos. Distribución: Según datos obtenidos por el Carnegie es posible que C. fusus no se desarrolle normalmente en abundancia en aguas oligotróficas. La temperatura de superficie donde fue encontrada varió de 7.2° a $29.5^{\circ} \mathrm{C}$ (Graham y Bronikovsky, 1944). Especie de todos los mares de aguas cálidas y a menudo causa fosforescencia (Subrahmanyan, 1968). Cosmopolita, excepto en aguas Antárticas y Sub-Antárticas (Wood, 1968).

Ceratium gibberum var. dispar (Pouchet) Sournia, 1966
Lám. IX, fig. 1
Pouchet, 1883, p. 423, vix fig. D, y 1893, fig. 13 d; Schiller, 1937, p. 397, fig. 436 a - b; Sournia, 1967 b, p. 447 , fig. 73; Orellana, 1971, p. 68, lám. XVI, fig. 2.

Esta célula presenta en su pared pequef̃os poros; cuerno apical ligeramente inclinado hacia el lado izquierdo en la base; cingulum plano; epiteca menot que hipoteca, esta ültima de forma gibosa en su base; antapicales curvándose hacia adelante, el antapical derecho menor que el izquierdo se curva por el lado dorsal de la célula delante del cuemo apical.

Dimensiones: trd: 95μ; antapical der: 84μ; antapical iz: 106μ; separación de los antapicales en el extremo: 72μ.
Distribución: Especie tropical, oceánica. Distribución vertical incierta (Sournia, 1967 b).

Ceratium gibberum var. subaequale Jörgensen, 1920

Lám. IX, figs, 2 - 3
Jörgensen, 1920, p. 70, fig. 68; Schiller, 1937, p. 397-398, fig. 437; Wood, 1954, p. 290, fig. 214 c; Sournia, 1967 b, 448 , fig. 74.

Célula con las mismas características de C. gibberum var. dispar; pero con los cuernos antapicales dirigidos hacia adelante, uniformemente curvados y casi paralelos al cuerno apical.

Dimensiones: trd: 91μ; antapical der: 106μ; antapical iz: 106μ; separación de los antapicales en el extremo: 133μ
Distribución: Especie muy rara, encontrada durante el mes de Mayo en una estación ubicada en el área central del Golfo de Guayaquil con temperatura del agua de $22.26^{\circ} \mathrm{C}$.

Ceratium hexacanthum Gourret, 1883

Lám. X, figs. 4-5
Gourret, 1883, p. 36, pl. 3 (fig. 49); Sournia, 1967 b, p. 484, fig. 98; Wood, 1968, p. 31, fig. 63.
Célula de pared fuertemente reticulada; cuerno apical recto; epiteca oblicua; antapical izquierdo curvándose hacia el cuerno apical; antapical derecho largo y delgado en forma de látigo.

Dimensiones: trd: 80-87 μ; antapical der: $209-361 \mu$; antapical iz: $125-285 \mu$
Distribución: Especie tropical muy tolerante (Graham y Bronikovsky, 1944). Especie de aguas cálidas (Wood, 1954). Cosmopolita de aguas cálidas y templadas (Margalef, 1961). Para Wood (1968) es una especie tropical y subtropical.

Ceratium horridum var. horridum Gran
 Lám. XI, fig. 4

Schiller, 1937, p. 413, fig. 455 a-c; Wood, 1954, p. 301, fig. $231 \mathrm{a}-\mathrm{i}$; Wood, 1968, p. 32, fig. 65 ; Taylor, 1976, p. 71, pl. 20-21, fig. 207.

Especie robusta; cuerno apical recto con alas dentadas; epiteca redondeada; hipoteca de base cóncava. Antapicales largos y truncados en sus extremos, los cuales son ligeramente divergentes, el antapical derecho más divergente que el izquierdo, ambos poseen fuertes espinas en sus bases y en las partes curvadas de los mismos presentan membranas hialinas.

Dimensiones: trd: 68μ; antapical der: 300μ; antapical iz: 30μ; separación de los antapicales en el extremo 437μ.
Distribución: Para Margalef (1961) especie cosmopolita de aguas templadas y cálidas. Especie de aguas frías en los océanos Atlántico, Pacífico e Indico (Wood, 1968).

Ceratium incisum (Karsten) Jörgensen
 Lám. VII, figs. 5-6

Jörgensen, 1961; Schiller, 1937, p. 37, fig. 407 b; Wood, 1954, pp. 275-276, fig. 190; Taylor, 1976, p. 61, pl. 12, fig. 118.

Célula de gran tamaño; epiteca adelgazándose gradualmente hasta formar el cuerno apical el cual se curva ligeramente; epiteca de longitud un poco mayor que la hipoteca; antapicales paralelos entre sí, el antapical izquierdo ligeramente curvado hacia el lado derecho y de mayor tamaño que el antapical derecho. Cingulum excavado.

Dimensiones: trd: 34μ; longitud surco-cuemo antapical der: 91μ; longitud surco-cuerno antapical iz: 179μ; separación de los antapicales en el extremo: 19μ
Distribución: Especie encontrada muy rara en la estación 5 del Golfo de Guayaquil durante el mes de Diciembre. Esta es una especie rara, estrictamente tropical con distribución limitada; en la colección del Carnegie, esta especie estuvo muy restringida en su distribución latitudinal y estuvo ausente de la región del Pacífico suroriental excepto en una estación frente al Ecuador.
C. incisum es considerada una forma estenoterna similar a C. belone y las temperaturas de superficie a la cual estuvo presente en el crucero del Camegie fueron para el Pacífico de $24.6^{\circ} \mathrm{C}$ a $29.5^{\circ} \mathrm{C}$, además parece que es una especie de aguas oligotróficas (Graham y Bronikovsky, 1944). Especie rara de aguas cálidas (Wood, 1954).

Ceratium longirostrum Gourret, 1883

Lám. VII, fig. 4
Gourret, 1883, p. 55, pl. 4 (fig. 65); Schiller, 1937, p. 376-377, fig. 416 a-b; Graham y Bronikovsky, 1944, p. 24, figs. 11 T-V, mapa 14; Sournia, 1967 b, p. 413, fig. 37; Taylor, 1976, p. 67, pl. 13, figs. 131 a-b.

Célula fusiforme. Epiteca larga, estrechándose para formar el cuerno apical el cual es ligeramente curvado. Hipoteca de menor tamaño que epiteca y provista de dos cuemos antapicales, de los cuales el antapical izquierdo se curva dorsalmente hacia el lado izquierdo; el antapical derecho es pequeñe y terminado en punta.

Dimensiones: L: 532μ; trd: 23μ; 1.ep. 289μ; 1 hip. 254μ.

Distribución: Es una especie rara, tropical intolerante, y no solamente es encontrada en aguas cálidas alejadas de la costa, sino que es frecuente en aguas pobres en nutrientes (Graham y Bronikovsky, 1944). Cosmopolita de aguas cálidas (Margalef, 1961). Forma de aguas cálidas (Subrahmanyan, 1968). En el material del "Anton Brun" la especie, mostró preferencia por aguas de alta temperatura, (Taylor, 1976).

Ceratium lunula (Schimper ex Karsten) Jörgensen
 Lam, X, fig. 3

Schiller, 1937, p. 399, fig. 439 a-b; Wood, 1954, p. 291, fig. 215 a-b; Wood, 1968, p. 35, fig. 76; Taylor, 1976, p. 85, pl. 16, fig. 171.

Célula de paredes alveoladas, epiteca casi triangular, cuerno apical recto; antapicales largos uniformemente curvados desde sus bases hasta sus extremos.

Dimensiones: trd: 87-95 μ; antapical der: $103-380 \mu$; antapical iz: 125-399 μ; separación de los antapicales en el extremo: $391-608 \mu$.
Distribución: Wood (1954) considera a esta especie rara, interoceánica de aguas cálidas. Especie cosmopolita de aguas cálidas (Margalef, 1961). Especie tropical (Sournia, 1967b).

Ceratium macroceros var. gallicum (Kofoid) Sournia, 1966
 Lám. XI, fig. 3

Jörgensen 1911, Taf. VII, fig. 134-135; Schiller, 1937, p. 430, fig. 469; Graham y Bronikovsky, 1944, p. 37-38, fig. 21 b; Taylor, 1976, p. 72-73. pl. 20, fig. 198-199.

Célula de tamaño mediano. Epiteca de lados cóncavos; la hipoteca presenta el lado izquierdo oblicuo, base recta formando un ángulo obtuso con los antapicales, los cuales se dirigen hacia atrás y hacia afuera presentándose dentados en la base.

Dimensiones: trd: 61μ; antapical der: 217μ; antapical iz: 228μ separación de los antapicales en el extremo: 342 山
Distribución: Según Graham y Bronikovsky, (1944) la subespecie gallicum es una especie un poco tropical
 partición vertical uniforme.

Ceratium massiliense (Gourret) Jörgensen, 1911
 Lám. III, figs. 1-2

Jörgensen, 1911, p. 66, figs. 140-142; Schiller 1937, p. 422, fig. 463 a-d; Subrahmanyan, 1944,
pp. 74-76, pl. IV, fig. 23; pl. VII, figs. 34-35; Hermosilla, 1973, pp. 64-65, lám. 33, figs. 3-4.
Célula $\mathrm{b} \quad \mathrm{e}$; cuemo apical largo y recto. Epiteca de lados convexos, ligeramente oblicua; hipoteca de mayor longitui que epiteca y de contorno posterior cóncavo. Cuemos antapicales curvados hacia arriba, separándose en los extremos y presentando espinas en la base, el cuerno antapical izquierdo se curva fuertemente en su base hacia adelante formando un ángulo de 90°, con el cuerno apical. Cingulum limitado por aletas cingulares que sobresalen en sus bordes.

Dimensiones: trd: 49-84 μ; antapical iz: $288-437 \mu$; antapical der: $292-456 \mu$; separación de los antapicales en el extremo: 361-532 μ.
Distribución: Especie tropical muy tolerante (Graham y Bronikovsky, 1944). Según Margalef, (1961) esta especie es cosmopolita de aguas templadas y cálidas. Wood (1964) considera C. massiliense como una especie océanica presenta en aguas temperadas de todo el mundo y como un buen indicador de la zona de contacto de aguas temperadas y subantárticas.

Ceratium pentagonum var. subrobustum Jörgensen, 1920

Lám. VIII, fig. 7

Jörgensen, 1920 (108), p. 26, fih. 16 a-b; Schiller 1937, p. 370-371, fig. 408 a-c; Balech, 1962 , p. 180, lám. XXV, figs. 385-386; Sournia, 1967 b, pp. 402-403, fig. 23; Taylor, 1976, p. 62-63, fig. 111 .

Célula de teca robusta, con poros y estrias longitudinales; cuerpo de forma pentagonal; antapicales gruesos dirigidos hacia atrás y divergentes, el antapical derecho de menor tamaño que el izquierdo. Cingulum excavado.

Dimensiones: trd: 57μ; surco-cuerno antapical der: 38μ; surco-cuemo antapical iz: 53μ; separación de los antapicales en el extremo: 42μ.
Distribución: Especie rara, tropical intolerante (Graham y Bronikovsky, 1944). Esta especie fue encontrada en la parte oriental de la corriente sur ecuatorial y Australia, pero no en las estaciones más frias (Nielsen 1934, en Graham y Bronikovsky, 1944).

Ceratium pentagonum var. tenerum Jörgensen, 1920

Lám. VIII, fig. 6
Balech, 1962, p. 180, lám. XXV, fig. 384; Sournia, 1967 b, pp. 402-403, fig. 24.

Célula con las mismas características que C. pentagonum var, subrobustum, pero diferenciandose de ésta, por tener el cuerpo de menor tamaño, paredes de teca delicada, cuemos antapicales finos, cortos y ligeramente divergentes.

Dimensiones: trd: 45μ; surco-cuemo antapical der: 30μ; surco-cuerno antapical iz: 42μ; separación de los antapicales en el extremo: 38μ.
Distribución: C. p. subrobustum y C. p. tenerum son de aguas cálidas (Balech, 1962). Variedad termófila, tropical y subtropical. Distribución vertical incierta, puede ser eufótica (Sournia, 1967 b).

Ceratium porrectum (Karsten) Jörgensen, 1911
 Lám. XII, figs. 1-4

Karsten, 1907, pl. 51, fig. 6; Schiller 1967, p. 389, fig. 427 a; Wood, 1954, p. 287, fig. 208; Sournia, 1967 b, pp. $425-426$, fig. 46.

Célula robusta de paredes alveoladas, con estrías gruesas y longitudinales. Epiteca de lados convexos. El cuerno apical presenta una membrana hialina que se extiende a ambos lados del cuerno desde la base del mismo, la cual desaparece cerca del extremo del cuemo. Cuernos antapicales gruesos y curvados, con membranas en sus lados concavos, antapical derecho más corto que el izquierdo.

Dimensiones: trd: 68-76 μ; antapical iz: $83-99 \mu$; antapical der: $57-87 \mu$; separación de los antapicales en el extremo: $106-190 \mu$.
Distribución: Esta especie fue encontrada en el área intema, central y oceánica del Golfo de Guayaquil durante los meses de Diciembre, Febrero, Mayo y Agosto.

Ceratium gravidum Gourret, 1883

Lám. VIII, fig. 8
Jörgensen 1911, Taf. I, figs. 8-12; Schiller 1937, p. 357, fig. 389; Graham y Bronikovsky 1944, figs. $3 \mathrm{a}-\mathrm{g}, 4 \mathrm{p}-\mathrm{u}$; Sournia $1967 \mathrm{~b}, \mathrm{p} .388$, fig. 3; Taylor 1976 , p. 57 , pl. 11, figs. 99,100 , $101 \mathrm{a}-\mathrm{b}$.

Célula de tamaño grande, desprovista de cuerno apical; epiteca de mayor tamaño que hipoteca y de forma ovoide; hipoteca presenta los dos cuernos antapicales dirigidos hacia atrás, el derecho menor que el izquierdo. Cingulum excavado.

Dimensiones: trd: 65μ; antapical der: 61μ; antapical iz: 87μ; separación de los antapicales en el extremo: 31μ
Distribución: Especie encontrada muy rara en el estación 3 del Golfo de Guayaquil durante el'mes de Agosto, con temperatura del agua de $16.91^{\circ} \mathrm{C}$. Especie oceánica, tropical y subtropical (Sournia, 1967 b).

Ceratium ranipes Cleve, 1900

Lám. IX, fig. 4

Cleve, 1900 , p. 15 , pl. 7(1); Graham y Bronikovsky, 1944 , p. 37 , figs. 19 I-K, $20,21 \mathrm{~A}$, mapa 36 , tabla 41; Balech, 1962, p. 186; Taylor 1976, p. 77, pl. 19, figs. 189-192.

Célula de tamaño pequeño; caracterizada por presentar espinas fuertes en los bordes del cuemo apical y de los antapicales. Epiteca de mayor tamaño que la hipoteca, se observa que el borde izquierdo de la epiteca es un poco inclinado. Cuemos antapicales curvados y dirigidos hacia adelante, generalmerite estos cuemos terminan ramificados formando como una especie de dedos. Los ejemplares estudiados en el Golfo de Guayaquil no presentaban estos dedos, pero según Balech, (1962) estos dedos suelen ser menos consistentes, más hialinos y débiles que el resto de la teca por lo cual pueden desprenderse o romperse con facilidad.

Dimensiones: trd: 61μ; antapical der: 57μ; antapical $i z ; 68 \mu$; separación de los antapicales en el extremo: 91μ.
Distribución: Especie tropical (Graham y Bronikovsky, 1944), tropical oceánica (Wood, 1968).

Ceratium strictum (Okamura y Nishikawa, 1904) Kofoid
Lám. VI, fig. 8

(Ok. y Nisk) Kofoid, 1907, p. 172; Graham y Bronikovsky, 1944, pp. 25-26, figs. 11BB-DD; mapa 16; Balech, 1962, p. 182.

Célula larga, de aspecto fusiforme. Se la diferencia de C. extensum por la presencia del cuerpo antapical derecho que es muy desarrollado y por tener el cuerpo ancho. Me adhiero a la opinión de Balech (1962) respecto al cuerno apical, pues los ejemplares que encontré en el Golfo de Guayaquil presentaban el cuerno apical muy largo y de mayor longitud que en C. extensum. Epiteca ligeramente de mayor tamaño que la hipoteca.

Dimensiones: L: 906μ; trd: 27μ; 1.ep: 551μ; 1.hip: 349μ; 1. antapical der: 66μ Distribución: La distribución de esta especie es igual que para C. extensum (Wood, 1954). Cosmopolita de aguas cálidas (Margalef, 1961).

Ceratium teres Kofoid, 1907
 Lám. VIII, fig. 9

Kofoid, 1907 c, p. 308, pl. 29, figs. 34-36, y 1907 a, fig. 4; Wood, 1954, p. 277, fig. 193; Sournia 1967, p. 405, fig. 28; Wood, 1968, p. 40, fig. 90; Taylor 1976, p. 63; pl. 12, fig. 110.

Cétula pequeña. Epiteca de forma triangular; hipoteca trapezoidal; cuerno apical largo y delgado; antapicales pequeños y divergentes terminados en punta, el izquierdo más grande que el derecho; debido a la característica de esta especie de presentar el antapical derecho muy reducido es que se la diferencia de C. pentagonum.

Dimensiones: trd: 34μ; surco-cuerno antapical der: 23μ; surco-cuerno antapical iz: 46μ; separación de los antapicales en el extremo: 31μ
Distribución: Esta es una especie rara tropical de amplia distribución, pero fue considerada en su mayor parte limitada a aguas cálidas (Graham y Bronikovsky, 1944).

Margalef (1961) considera a esta especie cosmopolita de aguas calidas. Para Wood (1968) es una especie oceánica, tropical y subtropical.

Ceratium trichoceros (Ehrenberg) Kofoid, 1908

Lám. XIII, figs. 1-2
Kofoid, 1908, p. 388; Wood, 1954, p. 311, fig. 239 a; Sournia, 1967 b, p. 472, fig. 89; Orellana, 1971, pp. 71-72, lám. XVII, fig. 1; Taylor 1976, p. 75, pl. 21, fig. 210.

Célula de cuerno pequeño, cuerno apical delgado ligeramente inclinado en la base; epiteca redondeada; hipoteca con los cuemos antapicales largos y delgados que se curvan hacia adelante colocándose paralelos al cuemo apical y presentando pequef̃as espinas en sus bases.

Dimensiones: trd: 42μ; antapical der: 361μ; antapical iz: 372μ; separación de los antapicales en el extremo: 396μ
Distribución: Especie tropical (Graham y Bronikovsky, 1944). Especie cosmopolita de aguas cálidas (Margalef, 1961). Especie tropical, estenoterma, común en los tres océanos. Para (Wood, 1968), especie tropical y subtropical, oceánica y nerítica. Según (Taylor, 1976) esta especie tiene una distribución muy interesante, ya que además de ser una especie tropical de amplia distribución, se la observó que en el material del "Anton Brun" alcanzó su máximo en el borde sur đe la región de la Corriente Sur Ecuatorial.

Ceratium tripos subsp. semipulchellum (Jörgensen) Graham et Bronikovsky

Lam. XI, figs. 1-2
Jörgensen, 1920; Schiller, 1937, p. 386-387, fig. 423 a-b; Graham y Bronikovský, 1944, p. 26, figs. $13 \mathrm{~L}-\mathrm{N}$.

Célula de cuernos antapicales muy desarrollados, siendo el derecho de menor longitud que el izquierdo.

Dimensiones: trd: $49-57 \mu$; antapical der: $76-114 \mu$; antapical iz: 87-125 μ; separación de los antapicales en el extremo: $160-190 \mu$.
Distribución: Es una forma tropical, la cual se encuentra casi continuamente en las regiones cálidas y en la región del Pacifico suroriental (Graham y Bronikovsky, 1944). Forma- ampliamente distribuida en aguas cálidas (Wood, 1954).

Ceratium tripos forma tripodioides (Jörgensen) Paulsen, 1931
 Lám. XII, fig. 5

Wood, 1954, pp. 285-286, fig. 205 c ; López, 1966, p. 332, fig. 34; Orellana, 1971, p. 60, lám. XIII, fig. 2.

Esta célula presenta la teea porulada; cingulum excavado; cuemo apical delgado y recto. La epiteca oblicua y la hipoteca de base convexa; cuernos antapicales curvados en la base y luego terminando casi paralelos al cuerno apical; el antapical izquierdo más largo que el derecho.

Dimensiones: trd: $49-53 \mu$; antapical der: 67-72 μ; antapical iz: 80-83 μ; separación de los antapicales en el extremo: 140μ
Distribución: Especie cosmopolita de aguas templadas y calidas (Margalef, 1961).

Ceratium dens Ostenfeld et Schmidt, 1901

Lám. XIII, figs. 3-4

Schiller 1937, p. 381, fig. 420 a-b; Sournia 1967 b, p. 457, fig. 80; Taylor 1976, p. 68, pl. 17, fig. 172.

Célula de paredes alveoladas; cuemo apical recto, ligeramente inclinado en su base; cingulum plano; epiteca suavemente convexa; hipoteca presenta los dos cuemos antapicales cortos dirigidos hacia los lados más bien en sentido lateral, ambos punteados en sus extremos.

Dimensiones: trd: 5765μ; antapical der: $15-19 \mu$; antapical iz: 31-38 μ.
Distribución: Durante el mes de Febrero esta especie fue encontrada en el área intema, central y oceánica del Golfo de Guayaquil con temperatura del agua de $25^{\circ} \mathrm{C}$.

Ceratium vultur var. sumatranum (Karsten) Steemann Nielsen
 Lám. X, figs. 1-2

Karsten, 1907, p. 530, pl. 48, fig. 15, pl. 51, fig. 14; Schiller 1937, p. 419, fig. 460 a-c. Wood, 1954, p. 305, fig. 233 d .

Especie robusta, con frecuencia formando cadena; la pared presenta pequeños poros; cuerno apical corto con membrana en su base; hipoteca de base ligeramente cóncava; antapical izquierdo se dirige primero posteriormente antes de curvarse hacia adelante, separándose en el extremo; el antapical derecho se extiende lateralmente, ambos antapicales provistos de membranas hialinas.

Dimensiones: trd: 84μ, antapical der: 319μ; antapical iz: 182μ; separación de los antapicales en el extremo: 418μ

Distribución: Según el crucero del Carnegie esta especie fue confinada al Pacífico cálido y la región del Pacífico sur oriental (Graham y Bronikovsky, 1944). Especie tropical (Wood, 1954).

Género CERATOCORYS Stein
 Ceratocorys horrida Stein, 1883

Lám. XIV, figs. 1-3

Stein, 1883, p. 20, pl. 6, (figs. 4-11): Schiller 1937, p. 443, fig. 485 a-c; Wood, 1954, pp. 313-314, fig. 242 a, b; Wood, 1968, p. 42, fig. 47; Balech, 1962, pp. 164-165; Taylor 1976, p. 91, pl. 26, figs. 265268, pl. 46, fig. 529.

Célula de cuerpo angular. Epiteca aplanada; hipoteca grande provista de espinas gruesas y dentadas, siendo las espinas dorsal y ventral de mayor tamaño que las otras, todas están cubiertas por una membrana hialina. Aletas cingulares grandes sujetas por radios. Célula de pared poroide.

Dimensiones: L: 65-68 μ; E: 57-60 μ; e: 49-53 μ.

Distribución: Cosmopolita de aguas cálidas (Margalef, 1961). Es uno de los mejores indicadores de aguas cálidas (Balech, 1962). Especie tropical oceánica (Wood, 1968).

Género CORYTHODINIUM Loeblich et Loeblich III emend. nov

Syn: Oxytoxum elegans Pavillard

Corythodinium elegans (Pavillard) nov. comb.
Lám. XVII, fig. 7
Pavillard, 1916, p. 43, pl. 2, fig. 4; Balech, 1962, p. 169-170, lám. XIX, fig. 286; Balech, 1971, p. 31, lám. VIII, fig. 138-141; Taylor, 1976, p. 122-123.

Célula de forma cónica más ancha en su parte central. Epiteca primero ensanchada en su base y luego terminada en punta. Hipoteca con una espina antapical pequeña. Cingulum estriado, descendente y con un ligero entrecruzamiento. Escultura de la célula con estrías transversales.

Dimensiones: L: 72μ; 1. de la epiteca: 27μ; trd: 34μ; ancho mayor de la epiteca: 38μ; 1 . de hipoteca: 42μ.
Distribución: Especie encontrada rara durante el mes de Diciembre en la estación 11 ubicada en la parte oceánica del Golfo de Guayaquil con temperatura del agua de $25.17^{\circ} \mathrm{C}$. Indopacífica de aguas cálidas (Margalef, 1961).

Género DINOPHYSIS Ehrenberg Dinophysis amandula Sournia Lám. XVIII, fig. 8

Schutt, 1895, p. 90; Wood, 1954, p. 186, fig. 17; Balech, 1962, p. 125-126, lám. XVI, figs. 205213; Balech, 1967:84; Balech, 1979, p. 21, lám. III, figs. 76-82.

Célula pequeña de forma ovoide, paredes con poros muy pequeños y apretados. Aletas cingulares desprovistas de varillas de refuerzo. Sulcal izquierdo muy desarrollada, más ancha en su parte posterior; la sulcal derecha extendiéndose más allá de R_{3}. Epiteca convexa, un poco elevada sobre el cingulum; hipoteca regularmente oval.

Dimensiones: $\mathrm{L}: 49 \mu$; e: 27μ; E: 38μ; $\mathrm{R}_{1}-\mathrm{R}_{2}: 11 \mu(8 \mu)$; $\mathrm{R}_{2}-\mathrm{R}_{3}: 15 \mu(8 \mu) ; \mathrm{C}: 8 \mu$.

Distribución: Ampliamente distribuida en aguas trópicales, subtropicales y cálidas (Wood, 1954). Cosmopolita de aguas cálidas (Margalef, 1961).

Dinophysis argus (Stein) Abé
Lám. XVIII, fig. 2, fots 6 a-b

Kofoid et Skogsberg, 1928: 104, f. 8/1, 2, 9; Schiller, 1933, p. 74-75, fig. 67 a; Balech, 1962, p. 126; Balech, 1967, p. 82; Wood, 1968, p. 112, fig. 341; Taylor, 1976, p. 33, pl. 4, fig. 35; Balech, 1979, p. 24, lám. IV, figs. 91-99.

Célula de tamaño grande, de forma ovoide. Epiteca cónica. Aletas cingulares poco desarrolladas. Sulcal derecha extendiéndose un poco más allá de R_{2} y formando un borde cóncavo entre R_{1} y R_{2}; la aleta sulcal izquierda con escultura de reticulado muy tenúe. Placas generales de esta célula con dominio de hexágonos.

Dimensiones: L: 91μ; e: 72μ; E: 76μ; C: 7μ; $\mathbf{R}_{1}-\mathbf{R}_{2}: 11 \mu(7 \mu) ; \mathbf{R}_{2}-\mathbf{R}_{3}: 27 \mu(24 \mu)$.
Distribución: Especie presente en todos los océanos de aguas tropicales y subtropicales (Wood, 1968).

Dinophysis caudata Saville - Kent, 1881
 Lám. XIV, figs. 4-6

Saville-Kent, 1881, pp. 455, 460; Balech, 1951, pp. 4-9, láms. I-IV; Abé, 1927, pp. 56-57, fig. 14 a-d; Taylor 1976, p. 34, pl. 6, fig. 59.

Célula de tamaño mediano, con paredes de escultura poroide. Epiteca muy pequeña; hipoteca de mayor tamaño prolongada en un apéndice caudal que en algunos ejemplares termina en dos protuberancias, mientras que otros no las presentan. Cingulum inclinado hacia el lado ventral provisto de aletas muy desarrolladas sujetas por radios. Aleta sulcal izquierda sujeta por tres varillas, en esta aleta se puede-distinguir una ornamentación en forma de venación. Algunos ejemplares se presentaron unidos dorsalmente por una membrana hialina.

Dimensiones: L: 87μ; e: 23μ; E: 42μ; a: 15μ; b: 30μ; C: $4 \mu ; \mathbf{R}_{1}-\mathbf{R}_{2}: 19 \mu(11 \mu) ; \mathbf{R}_{2}-\mathbf{R}_{\mathbf{3}}$ $23 \mu(15 \mu)$.
Distribución: Especie frecuente en agua tropical y subtropical, poco frecuente en aguas frías (Abé, 1927). Especie tropical y subtropical estuarina-nerítica (Wood, 1968). Cosmopolita de aguas templadas y cálidas (Margalef, 1961).

Dinophysis doryphorum (Stein) Abé
Lám. XVIII, fig. 1

Stein, 1883, p. 23, pl. 19, fig. 4; Wood, 1954, p. 191, fig. $30 \mathrm{a}-\mathrm{b}$; Memoirs of the Hourglass cruises, 1970, Vol. II, p. 212, fig. 168; Balech, 1967: 82; Taylor, 1976, p. 35, pl. 4, figs. 41-42.

Célula de forma oval, de paredes alveoladas. Epiteca pequeña y convexa. Hipoteca grande y oval. Cingulum convexo con membranas hialinas, angostas. Aleta sulcal izquierda de forma triangular, presentándose más. ancha en R_{3}. La región posteroventral presenta una espina alada, la cual se encuentra separada de la sulcal izquierda. Escultura de la teca formada de poros.

Dimensiones: $\mathrm{L}: 68 \mu ; \mathrm{E}: 65 \mu$; e: $57 \mu, \mathrm{R}_{1}-\mathrm{R}_{2}: 8 \mu$; $(4 \mu) ; \mathrm{R}_{2}-\mathrm{R}_{3}: 19 \mu(8 \mu) ; \mathrm{C}: 8 \mu$. Distribución: Ampliamente distribuida en mares tropicales, subtropicales, templados y cálidos (Wood, 1954).

Cosmopolita de aguas templadas y cálidas (Margalef, 1961). Especie interoceánica de aguas cálidas, (Wood, 1968).

Dinophysis operculoides (Schütt) Balech

Lám. XVIII, fig. 3
Schütt, 1895, lám. 2(11:1 y 3); Schiller, 1933, p. 64, fig. 58 a-b; Balech, 1967: 83; Balech, 1979, p. 14-20, lám. III, figs. 61-75.

Célula de tamafio grande, paredes provista de hexágonos con alveolos. Epiteca un poco elevada; aletas cingulares desprovistas de varillas de refuerzo. La aleta sulcal derecha sinuosa entre R_{1} y R_{2}; la sulcal izquierda convexa.

Dimensiones: L: 76μ; e: $68 \mu ; \mathrm{E}: 76 \mu ; \mathrm{R}_{1}-\mathrm{R}_{2}: 11 \mu(7 \mu) ; \mathrm{R}_{2}-\mathrm{R}_{3} ; 23 \mu ;(15 \mu) ; \mathrm{C}: 8 \mu$
Distribución: Especie encontrada en el material del Pacífico (Balech, 1962). Especie presente en aguas tropicales y subtropicales de todos los océanos (Wood, 1968). Cosmopolita de aguas templadas y cálidas (Margalef, 1961).

Dinophysis ovum Schütt, 1895
Lám. XIV, fig. 8
Schütt, 1895, pl. 1, (fig. 6); Wood, 1954, pp. 194-195, fig. 35 a-d; Wood, 1968, p. 50, fig. 120.
Célula pequefia, semi ovalada, borde dorsal redondeado, continuándose hasta su extremo posterior. Epiteca muy reducida; hipoteca grande con valvas onlamentadas de poros; membranas cingulares desarrolladas sostenidas por radios fuertes; aleta sulcal derecha corta llegando a R_{2}, sulcal izquierda ancha sujeta por tres varillas, R_{3}, dirigida hacia abajo.

Dimensiones: $\mathrm{L}: 49 \mu$; $: 38 \mu$; е: 15μ; с: 3μ; $\mathbf{R}_{1}-\mathbf{R}_{2}: 15 \mu(11 \mu): \mathbf{R}_{2}-\mathrm{R}_{3}: 19 \mu(15 \mu)$.
Distribucion: Cosmopolita de aguas templadas y cálidas (Margalef, 1961). Especie subtropical en el Hemisferio Norte (Wood, 1968).

Dinophysis parvula (Schutt) Balech

$$
\text { Lám. XVIII, fig. } 4
$$

Schiller, 1933, p. 63, fig. 57 a-d; Balech, 1962, p. 125, lám. XVII, fig. 251; Balech, 1967: 83; Wood, 1968, p. 117, fig. 354; Taylor, 1976, p. 40, pl. 4, figs. 38, 39.

Célula redonda. Epiteca un poco elevada y convexa. Aletas cingulares lisas. Sulcal izquierda de borde redondo, sujeta por tres finas varillas. La sulcal derecha, pequeña extendjendose un poco más allá de R_{2}. Pared cubierta de poligonos pequeños; contomo de la cellula formando un ribete marginal rayado.

Dimensiones: L: 57μ; e: $42 \mu ; \mathrm{E} ; 53 \mu ; \mathrm{R}_{1}-\mathrm{R}_{2}: 7 \mu(4 \mu) ; \mathrm{R}_{2}-\mathrm{R}_{3}: 19 \mu(15 \mu)$.
Distribución: Especie muy rara, encontrada solo en una estación del Golfo de Guayaquil. Especie presente en los océanos Atlántico y Pacífico (Taylor, 1976). Ampliamente distribuida en aguas callidas (Wood, 1968).

Dinophysis rapa (Stein) Abé
 Lám. XVIII, figs. 5-6

Stein, 1883, p. 23, pl. 19, figs. 5, 8; Abé, 1927, p. 66-67, fig. 19; Wood, 1968, p. 118, fig. 358; Balech, 1967: 84; Taylor, 1976, p. 40, figs. 48 a-b, pl. 41, fig. 488.

Cuerpo de forma de cuña, paredes presentando polígonos, cada uno con un poro. Epiteca aplanada sobre el cingulum. Hipoteca formando en la región antapical una protuberancia, la cual por el lado ventral forma con R_{3} de la aleta sulcal izquierda un margen angular. Aletas cingulares sujetas por varilfas. Sulcal izquierda poco desarrollada, la sulcal derecha extendiéndose a \mathbf{R}_{3}.

Dimensiones: L: 53μ; E: 49μ; e: 46μ; c: $8 \mu ; \mathrm{R}_{1}-\mathrm{R}_{2}: 11 \mu(8 \mu) ; \mathrm{R}_{2}-\mathrm{R}_{3}: 19 \mu(11 \mu)$.
Distribución: En aguas cálidas, templadas del pacífico y Atlántico (Abé, 1927). Ampliamente distribuida en mares calidos y templados (Wood, 1954). Cosmopolita de aguas cálidas (Margalef, 1961).

Dinophysis shuetti Murray and Whitting, 1899
 Lám. XIV, fig. 7

Murray and Whitting, 1899, p. 331, pl. 31, (fig. 10); Wood, 1963 a, p. 7, fig. 17; Wood, 1968, p. 52, fig. 126.

Céfula de forma esférica, paredes alveoladas. Cingulum con aletas cingulares sujetas por varillas de refuerzo. El sulcus, presenta la aleta sulcal izquierda hialina de bordes cóncavos sujeta por tres varillas; esta célula presenta en su parte posterior una aleta sujeta por una espina la cual se dirige hacia el lado ventral de la misma.

Dimensiones: L: 42μ; : $19 \mu ; \mathrm{E}: 38 \mu ; \mathrm{R}_{1}-\mathrm{R}_{2}: 27 \mu(11 \mu) ; \mathrm{R}_{2}-\mathrm{R}_{3}: 34 \mu(15 \mu)$.
Distribución: Cosmopolita de aguas calidas (Margalef. 1961). Especie eupelágica, cosmopolita (Wood, 1963 a).

Dinophysis sp.

Lám. XVIII, fig. 7

Célula de forma esférica, planozona. Cingulum con membranas hialinas lisas. Aleta sulcal izquierda desarrollada, observándose que R_{1} y R_{2} se encuentran próximas entre sí. Escultura de la teca poroide.

Dimensiones: L: 57μ; E: 46μ; e: 38μ; C: 8μ; $\mathrm{R}_{1}-\mathrm{R}_{2}: 8 \mu(4 \mu): \mathrm{R}_{2}-\mathrm{R}_{3}: 19 \mu(11 \mu)$.
Distribución: Especie encontrada muy rara durante el mes de Diciembre en las estaciones 5 y 13 del Golfo de Guayaquil con temperatura del agua de $25.18^{\circ} \mathrm{C}$ y $25.84^{\circ} \mathrm{C}$ respectivamente.

Género DIPLOPELTA Stein Diplopelta asymmetrica Mangin
Láms. XV, XXVII, XXVIII, figs. 4-6

Balech, 1964 a, p. 22; Sournia, 1978, p. 11; Taylor, 1976, p. 132, pl. 28, figs. 296 a-b, pl. 45, figs. 520 a-c.

Célula pequeña, esférica. Cingulum planozono con membranas hialinas. La tabulación es la típica para el género, presentando como característica diferencial dentro del grupo DIPLOPSALIS, la de poseer 6 precingulares y 2 placas antapicales, siendo la intercalar 1a, pequeña de forma romboidal desplazada hacia el lado izquierdo de la célula.

Dimensiones: 65μ; trd: 65μ
Distribución: Especie encontrada abundante en el Golfo de Guayaquil durante los meses de Febrero, Mayo y Agosto. Especie cosmopolita, tolerante tanto de condiciones frias, temperadas y tropical (Taylor, 1976).

Género DIPLOPELTOPSIS

Diplopeltopsis minor (Paulsen) Pavillard

Lám. XV, figs. 1, 3, 7, 8
(Paulsen) Pavillard, 1913 : 7; Balech, 1975 b, p. 39, fig. 26.
Célula de tamaño pequeño, de forma esférica. Cingulum circular, planozono con aletas cingilares finas. Este género se diferencia de Diplopelta por poseer 7 precingulares y 1 placa antapical.

Dimensiones: L: 49μ; trd: 64μ.
Distribución: Balech (1975 b) señala, que de acuerdo al reporte de la especie en diferentes lugares, parece ser el único dinoflagelado realmente cosmopolita.

Género EXUVIAELLA Cienkowski
Exuviaella compressa Ostenfeld
Lám. XV, fig. 9

Ostenfeld, 1899, [70], 59; Wood, 1968, p. 55, fig. 137; Balech, 1971a, pp. 39-40, lám. II, figs. 6-14.
Céhula pequeña, de forma oval, valvas ornamentadas de poros, la región del poro presenta en sus extremos dos dientes que se proyectan hacia el exterior; zona sutural anchay estriada.

Dimensiones: L: 38-49 μ; ancho mayor 34μ
Distribución: Cosmopolita de aguas templadas y calidas (Margalef, 1961).

Género GONYAULAX Diesing
 Gonyaulax diegensis Kofoid, 1911

Lám. XVI, fig. 6
Kofoid, 1911 a, p. 217, pl. 13 (figs. 21-24); Lebour, 1925, p. 95, pl. XIII, figs. 5a-5d; Wood; 1968, p. 58 , fig. 148 ; Taylor 1976, p. $100-101$, pl. 35 , fig. 400.

Célula redonda. Epiteca terminada en un cuello apical corto y cónico. Hipoteca convexa con dos espinas antapicales pequen̄as. Cingulum excavado, descendente, estriado. Sulcus ensanchado atrás. Escultura formada por poros finos.

Dimensiones: L: 72μ; trd: 61μ.
Distribución: Cosmopolita de aguas templadas y calidas (Margalef, 1961). Es una de las especies más euritermas de el género, encontrándola más común en aguas templadas que en tropicales (Taylor, 1976).

Gonyaulax fragilis (Schūtt, 1895) Kofoid
 Lám. XXVi, fig. 10

(Schütt) Kofoid, 1911 (131), p. 248, pl. 5 (33, 34, 36, 37), pl. 13 (25); Schiller 1937, p. 305, fig. 316 a - i; Balech, 1962, p. 159, lám. XXII, fig. 351; Taylor 1976, p. 101, pl. 30, fig. 420.

Célula de teca transparente; epiteca cónica sin cuello apical. Hipoteca ancha semielipsoidal. Cingulum cavozono descendente. Sulcus un poco ancho en la región posterior. Paredes con escultura formada por finas estrias longitudinales y puntos muy tenues.

Dimensiones: $\mathrm{L}: 99 \mu$ trd: 61μ.
Distribución: Cosmopolita de aguas cálidas (Margalef, 1961). Es probablemente una especie inter-oceánica y está limitada a aguas tropicales o cálidas templadas (Taylor, 1976).

Gonyaulax mitra (Schütt) Kofoid-
Lám. XVII, fig. 6

Especie de tamaño grande, forma cónica. Epiteca con escultura formada por ganchos ubicados en forma de estrías longitudinales. Hipoteca terminada en punta, provista también de estrias longitudinales; lo que no pude observar en la escultura de las placas hipotecales los ganchos que aparecían muy visibles en las epitecales. Cingulum descendente. Sulcus algo sinuoso: angosto en la epiteca, ensanchado en la hipoteca.

Dirnensiones: L: 289μ; trd: 87μ.
Distribución: Especie encontrada muy rara en las estaciones 13 y 8 del Golfo de Guayaquil durante el mes de Diciembre y Febrero con temperatura del agua de $25.8^{\circ} \mathrm{C}$ y $25.4^{\circ} \mathrm{C}$, respectivamente.

Gonyaulax pacífica Kofoid, 1907
Lám. XVI, figs. 1-3
Kofoid, 1907 b, p. 308, pl. 30, figs. 37-39; Schiller, 1937, p. 290, fig. 297; Graham, 1942, p. 48-50, fig. 62; Balech, 1962, p. 156-157; Taylor, 1976, pl. 35, figs. 395, 397; pl. 40, fig. 482.

Célula de tamaño grande. Paredes con alveolos pequeffos. Cingulum descendente y estriado. Epiteca cónica; hipoteca presentando una mayor convexidad hacia el lado derecho y terminado en su región antapical por una espina, se observa además un aplastamiento dorso-ventral.

Dimensiones: L: 129μ; trd: 68μ.
Distribución: Es una especie rara, aunque tiene una amplia distribución en mares tropicales. Es igualmente común en el Pacifico occidental y en el Pacífico oriental (Graham 1942). Según este mismo autor, durante el crucero del Carnegie, esta especie no mostraba una distribución continua en los trópicos, pero los limites de distribución de la especie mostraban una cerrada correlación con las isotermas de superficie de $20^{\circ} \mathrm{C}$. En base a estos estudios, Graham (1942) considera que es una especie estrictamente tropical y por esta razón es un buen indicador de masas de aguas tropicales, aunque no tan buen indicador como Ceratocorys horrida debido a su menos frecuente presencia. Cosmopolita de aguas cálidas (Margalef, 1961). Especie inter-oceánica de aguas cálidas, templada o tropical (Taylor, 1976).

Gonyaulax polygramma Stein, 1883

Lám. XVI, figs. 4-5

Stein, 1883, pl. 4 (fig. 15); Schiller, 1937, p. 292, fig. 300 a-j; Wood, 1968, p. 60, fig. 157; Hermosilla, 1973, pp. 58-59, lám. 31, fig. 12-16; Taylor, 1976, p. 107, pl 35, fig. 398.

Célula alargada. Epiteca ligeramente cónica, terminada en un pequeño cuerno apical; hipoteca convexa con una espina antapical. Cingulum excavado, descendente y estriado; sulcus angosto en la epiteca y ensanchándose hacia la región antapical. Paredes ornamentadas de poros y fuertes líneas longitudinales.

Dimensiones: L: 65μ; trd: 46μ.
Distribución: Especie presente en los océanos de aguas tropicales y subtropicales. Nerítica y oceánica (Wood, 1954). Cosmopolita de aguas templadas y cálidas (Margalef, 1961).

Gonyaulax polyedra Stein, 1883

Lám. XVI, fig. 10

Stein, 1883, p. 13, pl. 4, figs. 7-9; Abé, 1927, pp. 389-390, fig. 8; Nordische plankton. 1908, pp. 31-32, fig. 40; Schiller 1937, p. 291, fig. 299 a-f; Taylor 1976, pl. 35, fig. 396.

Célula de forma poliédrica. Contomo epitecal ligeramente recto; hipoteca de base recta. Cingulum excavado, descendente; sulcus ensanchado en la región antapical. Célula de paredes alveoladas y suturas marcadas.

Dimensiones: L: 49μ; trd: 46μ
Distribución: Especie ampliamente distribuida en aguas temperadas y subtropical (Lebour, 1925). Especie de aguas cálidas (Wood, 1954). Cosmopolita de aguas templadas y cálidas (Margalef, 1961).

Gonyaulax digitale (Pouchet) Kofoid
 Láms. XVI, XXIX, fig. 7

Kofoid 1911 a, pl. 9, figs. 1-5; Schiller 1937, p. 283, fig. 286 a-k; Wood 1968, p. 58, fig. 149.

Célula pequeña. Epiteca terminada en un cuemo apical corto, bordes epitecales formando hombros. Hipoteca convexa provista de dos espinas antapicales fuertes. Cingulum excavado, descendente. Sulcus expandido en su parte posterior. Teca de paredes formada de poros grandes y pequeñas espinas.

Dimensiones: L: 76μ; trd: 53μ.
Distribución: Especie estuarina, cosmopolita (Wood, 1968).

Gonyaulax turbynei Murray \& Whitting
 Lám. XVI, figs. 8 - 9

Murray \& Whitting, 1899 [68]: 23, pl. 28 (4 a, b); Lebour, 1925, p. 94, fig. 28 c; Balech, 1971 a , pp. 164-166, lám. XXXV, figs. 689-691 y lám. XXXVI, figs. 692-694; Taylor 1976, p. 108, pl. 35, fig. 399.

Célula pequeña, de forma oval y paredes delicadas. Epiteca de lados convexos, ligeramente cónica, no presenta cuerno apical. Hipoteca redondeada hacia la parte posterior sin espinas antapicales. Cingulum excavado, descendente; sulcus algo sinuoso, angosto en la región anterior y se ensancha y redondea hacia atrás.

Teca de paredes con estrías longitudinales, observándose también entre ellas la presencia de poros muy espaciados.

Dimensiones: L: 57μ; trd: 49μ.
Distribución: Especie de aguas cálidas (Lebour, 1925). Forma presente en el océano Atlántico tropical y en aguas cálidas del océano Pacífice (Wood, 1954). Cosmopolita de aguas cálidas (Margalef, 1961).

Género GONIODOMA Stein
Goniodoma polyedricum (Pouchet) Jörgensen, 1899
Lám. XV, figs. 13 - 16

Jörgensen, 1899, p. 33; Wood, 1954, p. 313, fig. 241 a-c; Orellana, 1971, pp. 73-74, lám. XVIII, figs. 1-5; Balech, 1979 c, p. 98, lám. 1, fig. 1.

Célula poliédrica. Epiteca formando tres ángulos, observándose además la presencia de un poro api-
cal. Cingulum ligeramente descendente con aletas cingulares sujetas por radios. Sulcus ancho. Hipoteca formando dos ángulos definidos. Placas ornamentadas de poros grandes.

Dimensiones: L: 53μ; trd: 49μ.
Distribución: En todos los océanos tropicales y subtropicales (Wood, 1954). Cosmopolita de aguas templadas y cálidas (Margalef, 1961).

Goniodoma sphaericum Murray and Whitting, 1899

Lám, XV, figs. 10-12
Murray and Whitting, 1899, p. 325, pl. 27, fig. 3; Wood, 1954, p. 313; Wood, 1968, p. 62, fig. 164; Balech, 1979 c, p. 100, lám. 1, figs. 10-19.

Célula pequeña, de forma esférica. Epiteca redonda con un poro apical; aletas cingulares anchas. Paredes de escultura poroide.

Dimensiones: L: 49μ; trd: 46μ.
Distribución: Especie antiboreal eurioica (Margalef, 1961). Especie presente en el mar Mediterráneo; océanos Indico, Pacífico y Atlántico (Wood, 1968).

Género ORNITHOCERCUS Stein
 Ornithocercus magnificus Stein, 1883

Lám. XVI, fig. 12
Stein, 1883, 1895 partim, pl. 23 (figs. 1-2); Wood, 1963, pp. 11-12, fig. 32; Orellana, 1971, p. 32, 1ám. III, fig. 8

Célula de cuerpo suboval, paredes alveoladas. Membranas cingulares desarrolladas, reforzadas por varillas. La aleta sulcal izquierda forma dos lóbulos en su parte posterior, observándose que el lóbulo central está sujeto por tres varillas dando la forma de un rombo. Epiteca de menor tamaño que hipoteca.

Dimensiones: L: $30-42 \mu$; e: $30-34 \mu ; \mathrm{E}: 38 \mu$.
Distribución: Especie cosmopolita de aguas cálidas, se encuentra en todos los niveles (Tregouboff y Rose, 1957). Cosmopolita de aguas cálidas (Margalef, 1961). Cosmopolita de aguas cálidas (Wood, 1968).

Ornithocercus quadratus Schütt, 1900

$$
\text { Lám. XVI, fig. } 11
$$

Schütt, 1900, pls. 5, 6, figs. 1-4, 12, 13; Wood, 1954, pp. 209-210, fig. 63 a-c; Wood, 1968, p. 86, fig. 242.

Célula de cuerpo circular. Epiteca de menor tamaño que hipoteca. Cingulum con dos aletas cingulares: anterior y posterior; ambas sujetas por varillas. Aleta sulcal izquierda muy desarrollada provista de varillas, las cuales se ramifican en sus extremos, esta aleta tiene forma cuadrada y termina en el lado dorsal del cuerpo. Célula de paredes con alveolos.

Dimensiones: L: 49μ; e: 46μ; E: 46μ.
Distribución: Ampliamente distribuida en mares tropicales, subtropicales y calidos-templados (Wood, 1954). Cosimopolita de aguas cálidas (Margalef, 1961). Especie en todos los océanos tropicales y subtropicales (Wood, 1968).

Ornithocercus Steinii Schütt, 1900
Lám. XVII, figs. 1-3

Schütt, 1900; Abé, 1927, pp. 94-97, fig. 35 a, b, c; Wood, 1954, p, 209, fig. 62; Wood, 1968, p. 86, fig. 244.

Célula de forma casi circular. Surco transversal presentando dos aletas: una anterior y otra posterior ambas muy desarrolladas y provistas de varillas. La aleta sulcal izquierda que termina en el borde dorsal de la célula, se caracteriza por ser muy ancha y de borde redondeado, además se encuentra reforzada por varillas, algunas de las cuales presentan ramificaciones en sus partes terminales. Epiteca convexa y de menor tamaño que hipoteca.

Dimensiones: L: 57μ; e: 61μ; E: 65μ.
Distribución: Ampliamente distribuida en mares tropicales, calidos y temperados (Wood, 1954). Cosmopolita de aguas cálidas (Margalef, 1961).

Ornithocercus thumii (Schmidt) Kofoid and Skogsberg, 1928
Lám. XVII, fig. 4
Kofoid and Skogsberg, 1928, p. 540, figs. 81-82, pl. 18 (figs. 4-6); Wood, 1954, p. 208, fig. 61 a-c; Memoirs of the Hourglass cruisses, 1970, Vol. II, p. 172, fig. 81.

Célula de forma subesférica. Aletas cingulares desarrolladas y sujetas por varillas. Aleta sulcal izquieda muy ancha con varillas de refuerzo y terminada en el borde dorsal de la célula, esta aleta se caracteriza porque su borde forma tres lóbulos: 1 posteroventral, 1 antapical y 1 posterodorsal, debido a lo cual la aleta sulcal izquierda en su región antapical tiene forma de V, siendo esto una de las caracteristicas para poderla diferenciar de O. Steinü.

Dimensiones: L: 55μ; e: 60μ; E: 62μ
Distribución: Ampliamente distribuida en mares tropicales, subtropicales, calidos y templados (Wood, 1954).

Género OXYTOXUM Stein
 Oxytoxum scolopax Stein, 1883

Lám. XVII, fig. 5

Stein, 1883, pl. 5, figs. 1-3; Balech, 1962, p. 171, lám. XIX, fig. 287; Balech, 1971 a, p. 166, lám. XXXVI, figs. 705-707; Taylor, 1976, p. 127-128, pl. 24, figs. 252-253; pl. 43, figs. 512.

Célula de forma cónica; paredes con poros pequeños y estrias longitudinales. Epiteca pequeña, de base redonda la cual luego se estrecha bruscamente para fornar una espina. Hipoteca de mayor tamaño que epiteca provista de una espina antapical.

Dimensiones: L: 91μ; altura de la epiteca: 22μ; ancho mayor de la epiteca: 8μ; idem de la hipoteca: 15μ
Distribución: Forma de, aguas cálidas, probablemente interoceánica (Wood, 1954). Cosmopolita de aguas cálidas (Margalef, 1961). Especie bien conocida de todos los mares cálidos (Balech, 1971 a). Especie in-ter-oceánica. Aunque parece preferir aguas cálidas, puede también aparentemente tolerar condiciones frías temperadas (Taylor, 1976).

Género PODOLAMPAS Stein

Podolampas bipes Stein, 1883
Lám. XVIII, fig. 12

Stein, 1883, pl. 8, figs. 6-8; Balech, 1963, pp. 9-11, lám. 1, figs. 8-14; Abé, 1966, pp. 150-154, figs. 55-68; Wood, 1968, p. 119, fig. 362.

Célula de tamaño grande, pinforme de cuello pequeño; paredes cubiertas por pequeños poros. La región antapical presenta dos espinas iguales, las cuales están cubiertas por membranas hialinas, siendo la izquierda más ancha que la derecha. Célula con aplastamiento dorsoventral.

Dimensiones: L: $95-99 \mu$; trd: $65-76 \mu$; 1, espinas antapicales: $26-27 \mu$; separación de las espinas an. tapicales en el extremo: 38-42 μ -
Distribución: Especie tropical, presente en los océanos Atlántico, Pacífico e Indico (Wood, 1954) ; Cosmopolita eurioica (Margalef, 1961). Especie tropical interoceánica (Wood, 1968).

Podolampas palmipes Stein, 1883
Lám. XVIII, fig. 11
Stein, 1883, pl. 8, figs. 6-8; Balech, 1963, pp. 12-13, lám. II, figs. 20-27; Abé, 1966, pp. 147-149; Wood, 1968, p. 119, fig. 365; Taylor, 1976, p. 171, pl. 27, figs. 278-279.

Célula delgada, piriforme, ahusándose gradualmente para formar un cuemo apical de extremo truncado. Espinas antapicales con membranas hialinas angostas, la espina antapical derecha de menor tamaffo que la iz. quierda.

Dimensiones: L: 68μ; trd: 27μ; espina antapical iz: 23μ; antapical der: 11μ separación de las espinas antapicales en el extremo: 11μ
Distribución: Cosmopolita de aguas templadas y cálidas (Margalef, 1961). Especie presente en aguas templadas, cálidas, subtropicales, del Pacifico y Atlántico (Abé, 1966). Especie interoceánica tropical. (Wood, 1968).

> Género PROROCENTRUM Ehrenberg Prorocentrum micans Ehrenberg, 1833

Lám. XVII, fig. 8
Ehrenberg, 1833, p. 307; Lebour, 1925, p. 16, pl. 1, figs. $5 a-5 c$; Wood, 1968, p. 123, fig. 380.
Célula ancha en la mitad con un aguzamiento posterior. Lado dorsal más convexo que el lado ventral. Región del poro provista de un diente largo con una membrana angosta. Escultura formada por poros pequeños.

Dimensiones: L: $46-57 \mu$; 1. del diente $8-11 \mu$.
Distribución: Especie nerítica estuarina y oceánica. Probablemente de amplia distribución (Wood, 1954). Especie boreal eurioica (Margalef, 1961).

Género PROTOCERATIUM Bergh
 Protoceratium areolatum Kofoid, 1907

Lám. XVIII, figs, 9-10
Kofoid, 1907 b, p. 169, pl. 12 (fig. 71); Balech, 1962, p. 75, lám. XXII, fig. 359; Wood, 1968, p. 124,
fig. 388.

Célula de tamaño pequeño, cavozona descendente. Epiteca e hipoteca ligeramente ovaladas, esta última sin cuemos ni espinas. Aletas cingulares angostas. Sulcus ancho y redondeado en su región antapical. Estructura de la teca con areolas muy fuertes.

Dimensiones: L: 42μ; trd: 34μ.
Distribución: Especie muy rara encontrada en una estación del Golfo de Guayaquil. Cosmopolita de aguas templadas y cálidas (Margalef, 1961). En aguas callidas de los océanos, Pacífico, Indico y Atlántico (Wood, 1968).

> Género PROTOPERIDINIUM Bergh
> Protoperidinium abei (Paulsen) Balech, 1974
> Lám. XIX, figs. 1-4

Paulsen, 1930, p. 73; Schiller, 1937, p. 138, fig. 136 a-h; Wood, 1954, p. 229, fig. 91; Wood, 1968, p. 97, fig. 283; Balech, 1974, p. 54; Taylor, 1976, p. 136, pl. 33, figs. 363-366.

Célula bicónica, orto, cavozona, descendente. Paredes con pequeños poros; célula con 2 placas intercalares; aletas cingulares angostas; sulcus ancho curvado hacia el lado izquierdo.

Dimensiones: $\mathrm{L}: 72 \mu$; trd: 45μ.
Distribución: Especie nerítica y estuarina, común en las distintas épocas del año (Wood, 1954). Especie estuarina (Wood, 1968).

> Protoperidinium asymmetricum (Karsten) Balech
> Lám. xx, figs. $1-3$

Balech, 1974 b, p. 54; Taylor, 1976, p. 145, Text. fig. 4 i, p1. 3i, fig. 326.
Especie meta-quadra cavozona, presenta un desplazamiento del cingulum hacia el lado izquierdo sobre la epiteca, observando además el cuerno antapical derecho de mayor tamaño. que el izquierdo. Escultura reticulada y poroide. Anchas bandas de sutura.

Dimensiones: L: $122-141 \mu$; surco-cuemo antapical $\mathrm{iz}: 53-57 \mu$; surco-cuerno antapical der: $57-68 \mu$; trd: $99-114 \mu$.
Distribución: Especie encontrada rara en el Golfo de Guayaquil.

Protoperidinium brochi (Kofoid et Swezy) Balech, 1974
 Lám. XIX, figs. 5-11

Kofoid y Swezy, 1921, p. 183; Schiller, 1937, p. 221, fig. 218; Balech, 1951, pp. 320-325, pl. VI, figs. 88-114; Trégouboff y Rose, 1957, I, p. 111, II, pl. 23, fig. 15; Balech, 1974, p. 60; Taylor, 1976, p. 146, pl. 31, figs. 332, 335.

Célula, meta-quadra, planozona, ligeramente ascendente, placas de ornamentación reticulada. Epiteca de lados convexos, estrechándose gradualmente para formar un cuerno apical cónico el cual posee un poro; hipoteca convexa con dos cuemos antapicales divergentes terminados en espinas. Cingulum provisto de membranas hialinas. Célula con anchas bandas de sutura.

Dimensiones: L: $87-125 \mu$; trd: $65-91 \mu$; surco-cuerno antapical der: 41-57 μ; surco-cuerno antapical iz: $38-57 \mu$; separación de los antapicales en el extremo: $27-42 \mu$.
Distribución: Cosmopolita de aguas cálidas (Margalef, 1961). Especie presente en los océanos Atlántico y Pacífico; mar Mediterráneo y Caribe (Wood, 1968).

Protoperidinium conicum (Gran) Balech, 1974
 Lám. XIX, figs. 12-13

Gran, 1902, p. 185, fig. 14; Abé, 1927, p. 406, fig. 24; Schiller, 1937, p. 233, fig. 229 a-j; Balech, 1974, p. 58; Taylor, 1976, p. 139, pl. 33, figs. 361-362.

Célula, orto hexa, cavozona, circular. Epiteca de forma triangular, sin cuemo apical; hipoteca cóncava con dos cuernos antapicales, formándose entre ellos un seno antapical un poco profundo. Bandas de sutura presentes. Escultura de reticulación may tenue.

Dimensiones: L: 76μ; trd: 32μ; surco-cuerno antapical der: e iz: 32μ; separación de los antapicales en el extremo: 23μ.
Distribución: Especie presente en aguas frías y cálidas, en todos los océanos (Wood, 1954). Cosmopolita de aguas templadas y cálidas (Margalef, 1961). Especie nerítica-estuarina (Wood, 1968).

Protoperidinium curtipes (Jörgensen) Balech, 1974
Lám. XX, figs. 4-5

Jörgensen, 1913; Lebour, 1925, pp. 128-129, fig. 39; Wood, 1954, p. 248, fig. 138; Margalef, 1957, p. 46, fig. e; Balech, 1974, p. 60; Taylor, 1976, p. 148, Text. fig. 4 e, pl. 31, figs. 322, 323.

Especie con las mismas características de P. asymmetricum, diferenciándose porque P. curtipes presenta los lados de la epiteca e hipoteca cóncavos, de cuerpo más ancho que alto; antapical izquierdo de mayor longitud que el antapical derecho.

Dimensiones: L: 106μ; trd: 114μ; surco-cuerno antapical der: 42μ; surco-cuemo antapical iz: 61 μ; separación de los cuernos en el extremo: 23μ.
Distribución: Forna interoceánica de aguas templadas (Wood, 1954). Cosmopolita de aguas templadas y cálidas (Margalef, 1961). Probablemente especie interoceánica (Taylor, 1976).

> Protoperidinium claudicans (Paulsen) Balech, 1974
> Lám. XX, figs. 6-7

Paulsen, 1907, p. 16, fig. 22, 1930, p. 67, fig. 38; Balech, 1951, pp. 314-317, lám. IV, figs. 56-74; Hermosilla, 1973, pp. 24-26, lám. VII, figs. 1-11, lám. VIII, figs. 1-21; Balech, 1974, p 57.

Célula de gran tamaño, aplanada dorsoventralmente orto quadra o penta, planozona, descendente. Epiteca de lados convexos prolongada en un cuerno apical cónico; hipoteca convexa provista de dos cuernos antapicales siendo el derecho de mayor tamaño que el izquierdo. Cingulum con aletas hialinas angostas; sulcus profundo.

Dimensiones: L: 114μ; trd: 84μ; surco-cuemo antapical der: 49μ; surco-cuemo antapical iz: 46 μ; separación de los antapicales en el extremo: 27μ.
Distribución: Cosmopolita de aguas templadas y cálidas (Margalef, 1961). Especie nerítica en todos los océanos (Wood, 1968).

Protoperidinium depressum (Bailey) Balech, 1974
 Lám. XXI, figs. 1-5

Bailey, 1885; Graham, 1942, pp. 18-21, fig. 14; Hermosilla, 1973, pp. 27-28, lám. 10, figs. 1-18; Balech, 1974, p. 57; Taylor, 1976, p. 160, pl. 34, fig. 383; pl. 45, fig. 526.

Célula de tamaño grande, orto quadra, planozona, descendente, aplanada dorsoventralmente. Epiteca con cuerno apical poco desarrollado; hipoteca presentando dos cuernos antapicales de los cuales el izquierdo es de menor tamaño que el derecho. Cingulum con membranas hialinas anchas sostenidas por rayos finos; aletas sulcales continuándose hasta la regín antapical. Célula con bandas intercalares anchas, placas de ornamentación reticulada.

Dimensiones: L: 152μ; trd: 116μ; surco-cuemo antapical der: 76μ; surco-antapical iz: 72μ; separación de los cuernos en el extremo: 49μ.
Distribución: Euryhalina y eurytérmica (Wood, 1954). Especie boreal eurioica (Margalef, 1961).

Protoperidinium cf. divaricatum Meunier
Lám. XX, figs. 8-10

Schiller, 1937, p. 235, fig. 233 a-e; Wood, 1954: 251 fig. 147; Taylor, 1976, p. 140, pl. 33, fig. 370.
Célula orto-quadra planozona. Epiteca de forma triangular, hipoteca terminada en dos cuernos antapicales, divergentes en sus extremos. Escultura reticulada.

Dimensiones: L: 72μ; trd: 76μ; separación de los antapicales en el extremo: 38μ. Distribución: Esta especie fue encontrada muy escasa en el Golfo de Guayaquil.

Protoperidinium divergens (Ehrenberg) Balech, 1974

Lám. XXI, figs. 6-8
Ehrenberg, 1840, p. 201; Trégouboff y Rose, 1957, I, p. 111; II, pl. 23, fig. 17; Orellana, 1971, pp. 41-42, lám. VI, figs. 3-6; Balech, 1974, p. 60; Taylor, 1976, p. 148, Text, fig. 4 a-b; pl. 31, figs. 319, $320,324$.

Célula de tamaño mediano, meta quadra, cavonoza, circular, longitud del cuerpo mayor que la del transdiámetro; epiteca de lados convexos terminada en un cuemo apical poco desarrollado provisto de un poro; hipoteca de lados convexos con dos cuemos antapicales iguales y divergentes. Aletas cingulares sujetas por rayos finos; aletas sulcales extendiéndose hasta la región antapical. Escultura reticulada, anchas bandas de sutura.

Dimensiones: L: 106-133 μ; trd: $102-106 \mu$; separaciốn de los cuernos en el extremo: $27-46 \mu$.
Distribución: Especie interoceánica, euryhialina. (Wood, 1968). Cosmopolita de aguas templadas y cálidas (Margalef, 1961).

Protoperidinium elegans (Cleve) Balech
Lám. XXII, figs. 1-5
Cleve, 1900; Cleve, 1954, p. 249, fig. 141; Balech, 1974, 60; Taylor, 1976, p. 149, Text. fig. 41 m, o. pl. 30, figs. $308,309,311,312,314,315$; pl. 46 , fig. 528.

Célula meta, quadra, cavozona circular, aplanada dorsoventralmente. En vista apical se puede observar la gran amplitud que presenta la región cingular. Epiteca e hipoteca de bordes profundamente cóncavos, esta última con dos cuemos antapicales divergentes, los cuales presentan sus extremos ligeramente redondeados. Aletas cingulares sostenida por rayos finos. Escultura de reticulado muy tenue.

Dimensiones: L: 137-186 μ; trd: 80-137 μ; separación de los antapicales en el extremo: 42-76 μ.
Distribución: Especie tropical, presente ocasionalmente en los subtrópicos (Wood, 1954).

Protoperidinium excentricum (Paulsen) Balech, 1974

Lám. XXII, fig. 8
Paulsen, 1907, p. 14, fig. 17; Balech, 1951, pp. 310-314, figs; 33-55; Wood, 1968, p. 101, fig. 299; Hermosilla, 1973, pp. 19-21, lám. IV, figs. 7-20; Balech, 1974, p. 54.

Célula deprimida de tamaño pequeño, orto cavozona, ligeramente ascendente; esta célula en vista apical tiene forma casi circular. Epiteca e hipoteca con aplastamiento dorsoventral, Epiteca ancha en su base y se va estrechando para formar un cuerno apical poco diferenciado. Hipoteca con dos protuberancias antapicales, siendo la del lado izquierdo de mayor tamaño. Aletas cingulares angostas; sulcus ensanchándose hacia el antapex.

Dimensiones: L: 30μ; trd: 65μ.
Distribución: Especie presente en los océanos Indico y Pacífico (Wood, 1968). Cosmopolita de aguas templadas y cálidas (Margalef, 1961).

Protoperidinium grande (Kofoid) Balech, 1974
 Lám. XXIII, figs. 9-11

Kofoid, 1907 b, p. 174, pl. 5 (figs. 28); Wood, 1954, p. 249, fig. 142; Wood, 1968, p. 102, fig. 303; Balech, 1974 60; Taylor, 1976, p. 150, Text, fig. 4 h, pl. 30, fig. 310 a-b.

Célula meta quadra, cavozona, ligeramente descendente. Epiteca de forma cónica; hipoteca con lados de concavidad menos profunda que la epiteca, con dos cuemos antapicales divergentes, siendo el izquierdo ligeramente más pequeño que el derecho. Aletas sulcales extendiéndose hacia el antapex. Escultura reticulada.

Dimensiones: L: $148-179 \mu$; trd: $103-110 \mu$; surco-cuemo antapical der: $76-83 \mu$; surco-cuerno antapical iz: $72-80 \mu$.
Distribución: Especie de oceanos tropicales (Wood, 1954). Cosmopolita de aguas cálidas (Margalef, 1961). Especie tropical interoceánica (Wood, 1968). Esta especie parece ser interoceánica, estrictamente tropical (Taylor, 1976).

Protoperidinium longipes (Karsten) Balech, 1974
Lám. XXIII, figs. 5-6
Karsten, 1907 [12], p. 418, lám. III (6); Balech, 1964, pp. 189-191, lám. III, figs. 48-55; Balech, 1974: 67.

Célula para hexa, planozona ascendente; cuerpo de forma pentagonal aplastado dorsoventralmente. Epiteca prolongada en un cuerno apical largo. Hipoteca de lados convexos y de base ligeramente cóncava, terminada en dos espinas antapicales grandes de igual tamaño, algo curvadas y divergentes, cada una provis-
ta de una membrana hialina ancha. Cingulum convexo con aletas cingulares sostenidas por rayos densos; sulcus ensanchándose hacia atrás, sobresaliendo la aleta sulcal izquierda por la región antapical dando la impresión de una tercera espina de menor tamaño. Célula de paredes transparentes.

Dimensiones: L: 87μ (sin espinas); trd: 53μ; 1. de las espinas: 34μ; separación de las espinas en el extremo: 53μ.
Distribución: Especie encontrada rara, durante el mes de Diciembre, en las estaciones 6,11 y 13 del Golfo de Guayaquil con temperatura del agua de $25.39^{\circ} \mathrm{C}, 25.17^{\circ} \mathrm{C}$ y $25.84^{\circ} \mathrm{C}$, respectivamente.

Protoperidinium oblongum (Cleve) Balech, 1974

Lám. XXIV, figs. 3-4

Cleve, 1900, p. 20; Lebour, 1925, p. 121, pl. XXIV, figs. la-1c; Hermosilla, 1973, pp. 29-30, lám. XI, figs. 1-16.

Célula de tamaño mediano, orto quadra, planozona descendente; especie muy parecida a P. oceanicum, pero con cuemos apicales y antapicales más pequeños. Aletas cingulares sostenidas por varillas finas. Placas de ornamentación reticulada y alveolos muy tenues; bandas intercalares presentes.

Dimensiones: L: 103μ; trd: 65μ; surco-cuerno antapical der: 48μ; surco-cuerno antapical iz: 46 μ; separación de los antapicales en el extremo: 42μ.
Distribución: Cosmopolita de aguas templadas y cálidas (Margalef, 1961). Especie nerítica (Wood), 1954).

Protoperidinium obtusum Karsten
 Láms. XXIII, XXXV, XXXVI, figs. 7-8

Karsten, 1906, 149 T. 23,fig. 12; Schiller, 1937, p. 240, fig. 241 a-b.
Célula de tamaño mediano orto hexa, cavozona, ligeramente descendente, aplanada dorsoventralmente. Epiteca de lados rectos; hipoteca con dos cuemos antapicales cortos terminados en espinas presentando una muesca profunda entre ambos antapicales. Cingulum inclinado hacia la región ventral. Poro apical bastante visible por la parte ventral de la célula. En los ejemplares encontrados en el Golfo de Guayaquil no pude observar la reticulación de placas que señala Wood, (1954), sino más bien la presencia de estrias longitudinales muy tenues.

Dimensiones: L: 95μ; trd: 76μ; separación de los antapicales en el extremo: 27μ.
Distribución: Especie presente en los océanos Indico, Atlántico y Pacífico (Wood, 1968).

Protoperidinium oceanicum (Vanhöffen) Balech, 1974
Láms. XXV, XXXIII, figs. 1-4

Vanhöffen, 1897; Margalef, 1957, p. 49, fig. e; Hermosilla, 1973, pp. 26-27, lám. IX, figs. 1-15; Balech, 1975, lám. I, pp. 20-23.

Célula grande aplanada dorsoventralmente, orto quadra, planozona descendente. Epiteca prolongada en un largo cuerno apical; hipoteca con dos largos cuernos antapicales, divergentes en sus extremos; aletas cingulares anchas; sulcus ensanchándose hacia la región antapical. Célula de paredes transparentes.

Dimensiones: $129-163 \mu$; trd: 68-72 μ; separación de los antapicales en el extremo: 57μ
Distribución: Especie oceánica, frecuentemente como huésped en aguas neríticas o estuarinas. En todos
los océanos (Wood, 1954). Boreal eurioica (Margalef, 1961).

Protoperidinium pedunculatum (Schütt) Balech, 1974

Lám. XXIV, figs. $1-2$
Schütt, 1895, pl. 14, fig. 47; Wood, 1968, p. 106, fig. 319; Orellana, 1971, p. 38, lám. V, fig. 8; Balech, 1974, p. 64.

Célula piriforme meta hexa, planozona. Epiteca presentando un cuello apical largo y delgado; hipoteca con espinas antapicales las cuales poseen aletas. Paredes de la célula con pequeños poros. Aletas cingulares sostenidas por radios. Sulcus provisto de aletas hialinas angostas. Esta especie se la relaciona por su forma con P. steinti de la cual se la puede diferenciar por presentar la epiteca de forma más cónica y provista de un cuerno apical más largo que P. steinii.

Dimensiones: L: $57-68 \mu$; trd: $42-49 \mu$; longitud de las espinas antapicales: 15μ.
Distribución: Cosmopolita de aguas cálidas (Margalef, 1961). Especie de aguas cálidas, interoceánica (Wood, 1968).

Protoperidinium pentagonum (Gran) Balech, 1974
Láms. XXIV, XXXIV, XXXV, figs. 9-11
Gran, 1902, p. 185, fig. 15; Lebour, 1925, p. 112, pl. XX, figs. 1a-1e; Abé, 1927, pp. 409-410, figs. 28-29; Schiller, 1937, p. 241, fig. 242 a-c; Hermosilla, 1973, pp. 30-32, lám. XII, figs. 1-12, 1ám. XIII, figs. 1-9.

Célula de tamaño mediano, forma pentagonal, más ancha que alta, orto hexa cavozona descendente. Epiteca cónica de lados rectos, terminada en un poro apical; hipoteca provista de dos cuernos antapicales cortos terminados en espinas, siendo el derecho de menor tamaño que el izquierdo. Cingulum presentando estrias verticales; sulcus ancho, no se extiende hasta el extremo antapical. Placas de omamentación reticulada.

Dimensiones: $\mathrm{L}: 84 \mu$; trd: 103μ; surco-cuemo antapical der: 27μ; surco-cuemo antapical iz: 34 μ; separación de los cuernos en el extremo: 34μ.
Distribución: Especie de aguas templadas y cálidas, en todos los océanos, nerítica, eurihalina, euritérmica (Wood, 1954). Cosmopolita de aguas templadas y cálidas. Forma nerítica-estuarina, ampliamente distribuida en todos los océanos (Wood, 1968).

Protoperidinium punctulatum (Paulsen) Balech, 1974

Lám. XXVI, figs. 8-9
Paulsen, 1908; Lebour, 1925, p. 123, fig. 37; Schiller, 1937, p. 245, fig. 245 a-b; Wood, 1954, p. 254, fig. $152 \mathrm{a}-\mathrm{c}$; Hermosilla, 1973, pp. 45-46, lám. XXII, figs. 1-19; Balech, 1974, p. 58.

Especie mediana, orto penta o hexa, cavozona, circular. Epiteca de lados rectos; hipoteca sin cuernos ni espinas antapicales formando en la región antapical una entrada muy leve; placas ornamentadas de pequefios poros; cingulum estriado con aletas cingulares angostas; sulcus ensanchándose hacia atrás.

Dimensiones: L: 57μ; trd: 61μ.
Distribución: Especie cosmopolita de aguas templadas y cálidas (Margalef, 1961).

Protoperidinium latispinum (Mangin) Balech
Láms. XXV, XXXI, XXXII, figs. 5-10

Schiller, 1937, p. 193, fig. 190 a-d; Balech, 1974, p. 62; Taylor, 1976, p. 155, pl. 32, fig. 336; pl. 44 , fig. 519.

Célula grande, piriforme, meta penta, planozona ascendente. Epiteca prolongada en un cuemo apical corto; hipoteca levemente aplanada en su base, provista de dos espinas antapicales, paralelas, aladas, siendo la derecha más larga debido a que la izquierda está adelantada ventralmente, lo cual puede observarse perfectamente cuando la célula es colocada en posición ventral, la espina antapical derecha presenta su borde interno dentado. Aletas cingulares sujetas por varillas de refuerzo; sulcus ensanchado hacia atrás. Célula con bandas de sutura angostas; placas omamentadas de poros.

Dimensiones: L: 110μ; trd: 65μ; 1. espina antapical der: 15μ; 1. espina antapical iz: 11μ; separación de las espinas en el extremo: 11μ.
Distribución: Especie encontrada en una gran mayoría de estaciones durante el mes de Febrero y Mayo con un promedio de temperatura del agua de $26.10^{\circ} \mathrm{C}$ y $25.10^{\circ} \mathrm{C}$, respectivamente.

Protoperidinium quarnerense (Schröder) Balech, 1974
 Lám. XXIV, figs. 12-14

Schröder, 1910; Wood, 1954, p. 236, fig. 111; Wood, 1968, p. 108, fig. 325; Orellana, 1971, p. 35, lám. V, figs. 1-3; Balech, 1974, p. 61.

Célula pequeña, globosa, meta quadra, planozona, ascendente. Epiteca prolongándose en su parte superior por un cuellito. La hipoteca presenta dos espinas antapicales. Cingulum provisto de aletas cingulares sostenidas por rayos finos; el sulcus con aleta sulcal izquierda ancha.

Dimensiones: L: 65μ; trd: 61μ; 1. espinas: 8μ.
Distribución: Especie de aguas cálidas en todos los océanos y en el Mediterráneo (Wood, 1954). Especie neritica, boreal eurioica (Margalef, 1961). Especie interoceánica de aguas calidas (Wood, 1968).

Protoperidinium simulum (Paulsen) Balech
 Láms. XXIII, XXVIII, figs. 1-4

Balech, 1974, p. 61; Balech, 1975, p. 21, lám.'II, figs. 7-11; Hermosilla, 1973, p. 21, lám. V, figs. 1-17; Taylor, 1976, p. 158, pl. 29, fig. 304.

Célula pequeña, globosa, meta penta, planozona, ascendente, con un cuello muy pequeño que emerge de la epiteca. Cingulum con aletas cingulares sostenidas por rayos finos; sulcus extendiéndose hasta la región antapical. Espinas antapicales ausentes.

Dimensiones: $\mathrm{L}: 57 \mu$; trd: 68μ -
Distribución: Especie encontrada muy escasa en el Golfo de Guayaquil.

Protoperidinium sp.
 Lám. XXIV, figs. 5-8

Célula para hexa, planozona, ascendente, piriforme ancha. Epiteca terminada en un pequefio cuello apical. Hipoteca con dos espinas antapicales desarrolladas, divergentes y provista de una membrana fina,
se observa además la formación de una pseudoespina, la cual es una proyección de la aleta sulcal izquierda, esta pseudoespina sobresale por la región antapical uniéndose parcialmente con la base de la espina antapical izquierda. Aletas cingulares sujetas por varillas que le sirven de soporte. Paredes con poros muy tenues.

Dimensiones: L; $50-57 \mu$; trd: $42-46 \mu$; 1. de las espinas antapicales; 8-11 μ.
Distribución: Encontrada en pocas estaciones del Golfo de Guayaquil.

Protoperidinium sp.
Lám. XXVI, figs. 11-12

Célula de tamaño mediano, tan ancha como alta, meta quadra, planozona, ascendente; epiteca cónica, ancha, formando un cuellito apenas diferenciado; hipoteca de lados convexos presentando dos espinas antapicales cortas algo divergentes; cingulum limitado por aletas angostas sostenidas por varillas finas; la aleta cingular por el lado izquierdo se extiende al sulcus alcanzando la región antapical donde forma una muesca que en vista ventral parece una pequeña espina. Algunos ejemplares presentando bandas intercalares anchas. La placa 2 a , quadra y de forma trapécica. Escultura formada por pequenios poros esparcidos.

Dimensiones: L: $53-65 \mu$; trd: $49-61 \mu$; las 1 . de espinas: $4-5 \mu$; separación de las espinas en el extremo: I1-15 μ.
Distribución: Esta especie fue encontrada en un gran número de estaciones de los meses de Diciembre, Febrero, Mayo y Agosto.

Protoperidinium sp.
 Lám. XXVI, figs. $1-2$

Célula mediana, orto hexa, cavozona. Epiteca de lados fuertemente cóncavos los cuales se levantan para formar un cuerno apical. 1' ancha, romboidal, con muesca en el antápex. Hipoteca de lados ligeramente convexos terminada en dos espinas antapicales cortas. Cingulum excavado algo descendente provisto de aletas pequefias. Sulcus ancho formando una muesca en la epiteca. Bandas de sutura estriadas.

Dimensiones: L: 84μ; trd: 53μ; surco-cuemo antapical der: 38μ; surco-cuerno antapical iz: 38 μ; separación de las espinas antapicales en el extremo: 27μ.
Distribución: Especie encontrada en varias estaciones del Golfo de Guayaquil durante los meses de Febrero y Mayo.

Protoperidinium sp.
 Lám. XXVI, figs. 5-7

Célula de mediano tamaño, orto hexa, cavozona, ligeramente descendente; epiteca de lados convexos sin cuello apical; hipoteca desprovista de cuernos antapicales, observándose más bien la formación de dos pequefias protuberancias dejando entre ellas una entrada poco profunda. Célula de paredes fuertemente reticuladas presentando además 2 placas intercalares (archaeperidinium). Cingulum ancho con estrías verticales y aletas cingulares muy angostas. Sulcus un poco ensanchado en la región de entrecruzamiento con el cingulum.

Dimensiones: L: 49μ; trd: 49μ
Distribución: Esta especie fue encontrada escasa en el Golfo de Guayaquil durante el mes de Febrero en las estaciones $5-6$ y 13 con temperatura del agua de $25.3^{\circ} \mathrm{C}, 26.4^{\circ} \mathrm{C}$ y $25.6^{\circ} \mathrm{C}$, respectivamente, y también en el mes de Mayo en la estación 5 con temperatura del agua de $23.3^{\circ} \mathrm{C}$.

Protoperidinium steinii (Jörgensen) Balech, 1974
 Lám. XXII, figs. 6-7

Jörgensen, 1899, p. 38; Schiller, 1937, p. 196, fig. 192 a-h; Wood, 1954, pp. 240-241, fig. 120 a; Wood, 1968, p. 109, fig. 329; Hermosilla, 1973, pp. 40-41, lám. 19, figs. 1-12; Balech, 1974, p. 63; Taylor, 1976, p. 159, pl. 32, figs. 349 a-b.

Célula de tamaño pequeño, piriforme, meta penta, planozona, ascendente; epiteca de lados convexos prolongándose en un cuello apical; hipoteca provista de dos espinas antapicales aladas y divergentes; aletas cingulares angostas sostenidas por radios.

Dimensiones: L: 54μ; trd: 41μ; 1. de las espinas antapicales 11μ; separación de las espinas en el extremo: 11μ.
Distribución: Especie muy rara encontrada en dos estaciones en el Golfo de Guayaquil durante los meses de Diciembre y Agosto. Especie cosmopolita de aguas templadas y cálidas (Margalef, 1961). Especie de aguas cálidas en los océanos Atlántico y Pacífico (Wood, 1968).

Protoperidinium thorianum (Paulsen) Balech, 1974
Lám. XXVI, figs. 3-4

Paulsen, 1905, p. 3, fig. 1a-b; Lebour, 1925, p. 108, fig. 2a-b; Balech, 1971, pp. 83-85, lám. XIII, figs. 208-215, lám. XIV, fig. 217; Balech, 1974, p. 55.

Célula de tamaño mediano, orto hexa, cavozona descendente; paredes con pequef̃os poros y estrias muy finas y poco visibles. Célula con dos placas intercalares (Archaeperidinium). Epiteca de lados convexos; hipoteca desprovista de cuemos antapicales, observándose en la región antapical una muesca poco profunda y de bordes redondeados. Cingulum provisto de estrías longitudinales y aletas cingulares angostas. Sulcus ensanchándose hacia abajo y alcanzando la región antapical. Algunos ejemplares presentaban bandas intercalares anchas.

Dimensiones: L: 49-57 μ; trd: 41-49 μ.
Distribución: Especie encontrada escasa en el área interna y oceánica del Golfo de Guayaquil en las estaciones 4 y 11 del mes de Mayo de 1973 , con temperatura del agua de $25.35^{\circ} \mathrm{C}$ y $20.01^{\circ} \mathrm{C}$, respectivamente.

Especie presente en aguas cálidas de los océanos Atlántico e Indico. Eurihalina y euritémica (Wood, 1954). Boreal eurioica (Margalef, 1961).

Género PTYCHODISCUS Stein Ptychodiscus noctiluca Stein
 Lám. XVIII, fig. 15

Pavillard, 1916 [192], p. 12, pl. 1 (3a, b); Schiller, 1937: 77, fig. 62 a, b; Balech, 1962, p. 141-143, lám. XIX, figs. 277-280; Taylor, 1976, p. 174, pl. 37, figs. 438-440; pl. 40, fig. 487.

Célula de forma lenticular. Epicono de menor tamaño que hipocono; en el centro del epicono se observa una cresta hialina, que se extiende desde la región dorsal, donde se presenta un poco elevada, hasta descender luego ventralmente. Cingulum ligeramente descendente y ancho en la región ventral. Sulcus extendiéndose hạsta el borde del hipocono.

Dimensiones: L: 65μ; trd: 61μ
Distribución: Cosmopolita de aguas templadas y cálidas (Margalef, 1961). Esta especie parece ser relativa-
mente eurytérmica, tolerando un rango desde las regiones tropicales de los tres más grandes océanos a las de aguas frias (Taylor, 1976). Especie encontrada rara en la parte externa y oceánica del Golfo de Guayaquil durante el mes de Febrero de 1973.

Género PYROPHACUS Stêin Pyrophacus steinii Schiller

Lám. XVIII, figs. 13-14
Schiller, 1937, p. 87 , fig. 74 a-d: Taylor, 1976, p. 183, pl. 34, figs. 384, 385, 386, 389; pl. 44, fig. 518; Balech, 1978 b, p. 33, lám. I, fig. 2 y $19-21$, lám. II, figs. $1-5$.

Célula aplanada, de forma lenticular. Epiteca e hipoteca iguales, está última sin espinas antapicales. Las placas se presentan muy marcada con fómulas: Po, $7^{\prime}, 12^{\prime \prime}, 12 \mathrm{C}, 12^{\prime \prime \prime}, 3^{\prime \prime \prime \prime}, 3 \mathrm{P}, 8 \mathrm{~S}$.

Dimensiones: trd: 148μ : E: 133μ.
Distribución: Cosmopolita de aguas templadas y cálidas (Margalef, 1961). Especie de mares cálidos (Wood, 1968).

AGRADECIMIENTO

Deseo expresar mi agradecimiento a los Directores del Instituto Oceanográfico de la Armada por el apoyo brindado a la realización de esta publicación.

Al Dr. Roberto Jiménez S., quien en todo momento prestó su valiosa orientación en el desarrollo de este trabajo.

Al Sr. Víctor Mesias por su colaboración en la presentación de las láminas que aparecen en esta publicación.

Al Biol. Iván Zambrano por la toma de microfotografias de los organismos, realizados en el Servicio de Microscopía Electrónica de Barrido del Instituto de Neurobiología de Buenos Aires - Argentina.

Así mismo al Proyecto Multinacional de Ciencias del Mar de la Organización de los Estados Americanos (O. E. A.) a través de su Programa Regional de Desarrollo Científico y Tecnológico, que financió parcialmente estas investigaciones.

BIBLIOGRAFIA

Abé, T. H.,	1927.	Notes on the Protozoan fauna of Mutsu Bay. Peridiniales. Sc. Rep. of. the Tohoku Imp. 4th. ser., Biol., vol. II (4): 383-438.
	1936.	Idem, Subg. Protoperidinium: Genus Peridinium. Ibidem. vol. XI (1): 19-48.
	1940.	Studies on the Protozoan fauna of shimoda Bay. Genus Peridinium: group globula. Sc. Rep. Tokyo Bunrika Daigaku. Sect. B. vol. 5 (82): 27-38.
	1941.	Studies on the Protozoan fauna of shimoda Bay: the Diplopsalis group. Records of Ocean. Works in Japan, vol. XII (2): 121-144.
	1966.	The armoured Dinoflagellata: I Podolampidae: Publ. Seto Mar. Biol. Lab., vol. XIV (2): 121-144.
	1967 (a).	The armoured dinoflagellata: II. Prorocentridae and Dinophysidae (B)-Dinophysis and its allied genera. Ibidem, vol. XV (1): 37-78.
	1967 (c).	Idem (c)-Omithocercus, Histioneis, Amphisolenia and others. Ibidem, vol. XV (2): 79-116.

Balech, E., 1949. Estudio de Ceratocorys horrida var. extensa. Physis, t. XX (57): 155-173.
_ 1951. Deuxieme contribution a la connaissance des Peridinium. Hydrobiologia. Vol. III (4): 305-330.
1959. Two new genera of Dinoflagellates from Califomia. Biol. Bull, vol. 116 (2), pp. 195-203.
1962. Tintinnoinea y Dinoflagellata del Pacífico según material de las expediciones Norpac y Downwind del Instituto Scripps de Oceanografía. Rev. Mus. Arg. C. Nat. "B. Rivadavia": Cienc. Zool., vol. VD (1): 1-253, y XXVI lám.
__._ 1963. La familia Podolampacea (Dinoflagellata). Boletín Inst. Biol. Marina Mar del Plata, No. 2: 1-30.
_1964 a. El plancton de Mar del Plata durante el período 1961-1962. Boletín Inst. Biol. Marina Mar del Plata. No. 4: 1-49, 5 lám.
— 1964 b. Tercera contribución al conocimiento del género Peridinium. Rev. Mus. Arg. C. Nat. "B. Rivadavia", Hidrobiología vol. I (6): 179-201, 3 lám.
1967. Dinoflagelados nuevos o interesantes del Golfo de México y Caribe. Ibidem., vol. II (3): 77-126, 9 lám.

1971 a. Microplancton de la Campaña Oceanográfica Productividad III. Ibidem. Vol. III (1): 1-202, 39 lám.

1971 b. Microplancton del Atlántico ecuatorial oeste (Equalant 1). Serv. Hidrog. Naval, Buenos Aires, H. 654: 1-103, 12 lám.

Balech, E., 1973. Cuarta contribución al conocimiento del género Protoperidinium. Rev. Mus. Arg. C. Nat. "B. Rivadavia". Hidrobiología, vol. III (5): 347-368, 6 lám.

1974 b. El género Protoperidinium Bergh, 1881. (Peridinium Ehr. 1881 Partim). Ibidem. Vol. IV (1): 1-79.

1975 a. Estructura de Protoperidinium en microscopia electrónica de barrido. Neotrópica. Vol. 21 (64): 20-25, 2 lám.

1975 b. Clave ilustrada de Dinoflagelados Antárticos. Inst. Antart. Argentino. Buenos Aires. No. 11, pp. 1-99.
1976. Notas sobre el género Dinophysis (DINOFLAGELLATA). Physis. Vol. 35 (91): 183-193.

1977 a. Cuatro especies de "Gonyaulax" sensu lato, y consideraciones sobre el género (DINOFLAGELLATA). Rev. Mus. Arg. C. Nat. "B. Rivadavia", Hidrobiología, T.V(6): 115-136, 3 lám.

1977 b. Estructura de Amphisolenia bidentata Schröder (DINOFLAGELLATA). Physis. Vol. 37 (93): 25-32.

1978 a. Microplancton de la Campaña Productividad IV. Rev. Mus. Arg. C. Nat. "B. Rivadavia", Hidrobiología, T. V(7): 137-201, 9 lám.
— 1978 b. El género Pyrophacus Stein (DINOFLAGELLATA). Physis. Vol. 38 (94): 27-38.
_1979 a. Dinoflagelados. Campaña Oceanográfica Argentina. Islas Orcadas. Armada Argentina. Serv. Hidro. Nav. H. 655, pp. 3-76, 10 lám.

1979 b. Tres dinoflagelados nuevos o interesantes de aguas Brasileñas. Bolm. Inst. Oceanogr., S. Paulo, 28 (2): 55-64.

1979 c. El género Goniodoma Stein (Dinoflagellata). Lilloa. XXXV: 2, pp. 97-109.
1980. On thecal morphology of dinoflagellates with special emphasis on circular and sulcal plates. An. Centro Cienc. Del Mar y Limnol. Univ. Nal. Autón. México, 7(1): 57-68.

Balech, E. y H. J. Ferrando, 1964. "Fitoplancton marino". Eudeba. 157 págs.
Braarud, T., 1950. Taxonomical studies of marine dinoflagellates. Nytt. Mag. Naturv., 88: 43-48.
Brand, K. y Apstein, C., 1964. Nordisches Plankton. Botanischer-Teil. Neudruck A. Asher \& Co., Amsterdam.

Graham, H. W., 1942. Studies in the morphology, taxonomy, and ecology of the Peridiniales. Carnegie. Inst. Wash. Publ. No. 542: 1-129.

Graham, H. W. y N. Bronikovsky, 1944. The genus Ceratium in the Pacific and North Atlantic Oceans. Ibidem. Publ. No. 565: 1-209.

Hermosilla, J. G., 1972. Variación estacional de los Dinoflagelados y Tintinido en la Bahía de Concepción, Chile. Bol. Soc. Biol. Vol. XLIV: 149-159.
1973. Contribución al conocimiento sistemático de los Dinoflagelados y Tintinidos del Archipiélago de Juan Femández. Ibidem. Vol. XLVI: 11-36.
1973. Contribución al conocimiento sistemático de los Dinoflagelados de la Bahia de Concepción, Chile. GAYANA No. 24: 1-149; 35 lảm. Universidad de Concepción, Chile.

Jiménez, R., 1974. Marea Roja, debida a un ciliado en el Golfo de Guayaquil, Ecuador. Bol. Inst. Ocean. de la Armada. C. M.-Biol.-2 Guayaquil - Ecuador.
1975. Composición y variación del fitoplancton marino del Golfo de Guayaquil y áreas adyacentes. Tesis doctoral, Univ. de Guayaquil - Ecuador.
1976. Diatomeas y Silicoflagelados del fitoplancton del Golfo de Guayaquil, Ecuador. Bol. Inst. Ocean. de la Armada. C.M.-Bio.-5. Guayaquil - Ecuador. 52, pp., 19 lám.

Jörgensen, E., 1911. Die Ceratien. Eine Kurze Monographie der Gattung Ceratium Schrank. Internat. Rev. ges. Hydrobiol. Hydrogr. 4. Biol. Suppl. 1: $1-124+10 \mathrm{pl}$.

Kofoid, C. A. 1911. Dinoflagellata of the San Diego Region IV, the genus Gonyaulax. Univ. Calif. Publ. Zool., 8 (4): 187-266, pls. 9-17.

Kofoid, C. A. y O. Swezy. 1921. The free-living unarmored Dinoflagellata, Mem. Univ. Calif. Vol. 5:1-562.
Lebour, M. V., 1925. The dinoflagellates of northern seas., Mar. Biol. Ass. Plymouth: 172 pp. 35 lám.
Loeblich, A. R., Jr. and A.R. Loeblich, III, 1966. Index to the genera, Subgenera and Sections on the Pyrrhophyta. Stud. Trop. Oceanogr. Miami. 3: 1-94.

López, J. 1955. Variación alométrica en Ceratium tripos. Invest. Pesq. Barcelona. T. II: 131-159.
López, J., 1966. Variación y regulación de la forma en el género Ceratium. Invest. Pesq. Barcelona. Vol. XXX: 325-427.

Margalef, R., 1957. Fitoplancton de las costas de Puerto Rico. Invest. Pesq. Barcelona. Vol. VI: 39-52.
_1961. Distribución ecológica y geográfica de las especies del fitoptancton marino. Ibidern. Vol, XIX: 81-101.

Massuti, M. y Margalef, R. 1950. Introducción al estudio del plancton marino. Patronato J. de la Cierya de Invest. Técnicas. Sec. de Biología Marina. Barcelona.

Miro, M., Jinénez, R., Gualancañay, E. y Luzuriaga, M. 1974. Producción Primaria y pigmentos fotosintéticos del fitoplancton marino del Ecuador. Bol. Inst. Ocean. de la Armada, C.M-Bio.-1. Guayaquil -Ecuador.

Miro, M., y Ayon, H., Benites, B., 1976. Morfologia y estructura del margen continental del Ecuador. Ibidem. C.M.-Bio.-1. Guayaquil - Ecuador.

Orellama, E., 1971. Sistemática (Dinoflagellatae) y distribución del fitoplancton marino en una área del Pacífico Sud-Oriental (Operación Oceanográfica "MAR-CHILE VII". Marzo, 1968). Tesis de licenciatura. Universidad Católica de Valparaiso, Chile.

Peribonio, R. de, 1975. Distribución de los pigmentos clorofilicos en el Golfo de Guayaquil. Tesis doctoral, Univ. de Guayaquil, Ecuador.

Pesantes, S. F., 1978. Dinoflagelados del fitoplancton del Golfo de Guayaquil, Ecuador. Publ. Inst. Ocean. de la Armada. Vol. 2, (2): 46 pp., 26 lám.
1979. Distribución de Ceratiums tripos subsp. semipülchellum (Jörg) - Graham y Bronikovsky, 1944 (Dinoflagellata) en aguas ecuatorianas durante "El Niño" de 1972. Bol. ERFEN. Lima, Perú, vol. 3 (1, 2): p. 8.
1980. Distribución de los Dinoflagelados en el fitoplancton del mar ecuatoriano. Tesis doctoral. Univ. Guayaquil, Ecuador.

Schiller, J., 1933. Dinoflagellatae, in Dr. L. Rbenhort's Krytogamen-Flora, Band I, 1 Teil, Leising, 617 Pp.
—1937. Dinoflagellatae, Ibidem, X, 2, 590 pp.
Schütt, F., 1895. Die Peridineen der Plankton - Expedition. Ergebn. Plankton - Exped. HumboldtStiftung. Vol. 4: 1-140, 27 lám.

Sournia, A., 1967 a. Contribution a la connaissance des Peridiniens microplanctoniques du Canal de Mozambique. Collected reprints of the Inter. Ind. Ocean. Exp. Vol, VI, contrib. No. 444, pp. 485-510.

1967 b. Le genre Ceratium (peridinien planctonique) dans le canal de Mozambique. Contribution a une revision mondiale. Vie et Milieu, 18: (2-3-A): 375-500.
1978. Catalogue des espéces et taxons infraspécifiques de Dinoflagellés marins actuels publies depuesis le revision de J. Schiller. III (complément). Rev. Algol. N. S. XIII (1): 3-40.

Steidinger, K. A. y Williams, J., 1970. Dinoflagellates. Memoirs of the Hourglas Cruises. Mar. Res. Lab. Florida Department of Natural Resources St. Petersburg. Florida. Vol. II: 251 pp.

Subrahmanyan, R., 1968. The Dinophyceae of the Indian seas. Genus Ceratium Schrank. Mar. Biol. Ass. India, Mem. II, Pt. 1: 129 pp. 9 lám.

Tai, L. S. and T. Skogsberg. 1934. Studies on the Dinophysoidae, marine armored dinoflagellates, of Monterey Bay, California. Arch. Prot. 82: 380-482.

Taylor, F. J. R., 1976. Dinoflagellates from the International Indiam Ocean Expedition. Biblioteca Botánica, Heft. 132, 234 pp y 46 lám.

Wood, E. J. F., 1954. Dinoflagellates in the Australian Region. Aust. J. Mar Freshw. Res. Vol. 5 (2): 171-351.
1963. Dinoflagellates in the Australian Region II. Recent Collections. Rep. Div. Fish. Oceanogr. C.S.I.R.O. Aust., Tech. Pap., 14: 1-55.
1968. Dinoflagellates of the Caribbean sea and adjacent areas Univ. Miami Press. 143 pp.

Fig. 1.- Posición de las estaciones en el área de estudio B.A.E. "Orión", noviembre 1972 - agosto 1973

LAMINAS

LAMINA

Figuras	$1-6$	Amphisolenia bidentata Schröder
Figura	1.	Vista lateral del extremo posterior
Figura	2.	Vista lateral derecha del proceso anterior y parte anterior del
		cuerpo. Figura
3.	Vista lateral derecha de un ejemplar integro	
Figura	4.	Vista ventral anterior del cuerpo
Figura	5.	Vista lateral derecha de un ejemplar
Figuras	$6 a-b$	Vista lateral del extremo posterior

5
0

LAMINA II

Figuras $1-3$ Ceratium candelabrum var. depressum (Pouchet) Jörgensen.

Figura	1.	Célula formando cadena.
Figura	2.	Vista dorsal.
Figura	3.	Vista ventral.
Figuras	$4-5$	Ceratium azoricum Cleve.
Figura	4.	Vista ventral.
Figura	5.	Vista dorsal.
Figura	6.	Blepharocysta splendor-maris Ehrenberg.

LAMINA III

Figuras	$1-2$	Ceratium massiliense (Gourret) Jörgensen.
Figura	1.	Vista dorsal.
Figura	2.	Formando cadena (vista ventral).
Figuras	$3-4$	Ceratium breve var. breve (Ostenfeld and Schmidt) Schröder
Figura	3.	Vista ventral. Figura 4.
		Vista ventral de otro individuo mostrando un engrosamiento en la curvatura
Figura	5.	Ceratium carriense Gourret.

LAMINA III

		LAMINA IV
Figura	1.	Ceratium deflexum (Kofoid) Jörgensen.
Figuras	$2-3$	Ceratium contortum var. karstenii (Pavillard) Sournia
Figura	2.	Vista ventral.
Figura	3.	Vista dorsal.
Figuras	$4-5$	Ceratium declinatum Karsten.
Figura	4.	Vista dorsal.
Figura	5.	Vista ventral.

LAMINA V

Figuras	$1-2$	Ceratium euarcuatum Jörgensen.
Figura	1.	Vista dorsal.
Figura	2.	Vista ventral.
Figuras	$3-4$	Ceratium contortum var. karstenii (Pavillard) Sournia.
Figura	3.	Vista dorsal.
Figura	4.	Vista ventral.

LAMINA VI

Figuras 1 - 2 Ceratium falcatum (Kofoid) Jörgensen.
Figura 1. Vista ventral.
Figura 2. Vista dorsal.

Figuras $3-7$ Ceratium fusus (Ehrenberg) Dujardin.
Figura $3 . \quad$ Vista ventral (L: 270μ).
Figura $\quad 4 . \quad$ Vista dorsal (L: 270μ).
Figura 5. Vista ventral de un ejemplar de L: 784μ en el que se puede observar la presencia del cuerno antapical derecho pequeño, además el antapical izquierdo se presenta más grueso y aserrado que los otros ejemplares.

Figuras $6-7$ Vista ventral y dorsal de otro ejemplar de C. fusus (L: 491μ).

Figura 8. Ceratium strictum (Okamura y Nishikawa) Kofoid.
Vista dorsal.

Figura 9. Ceratium extensum (Gourret) Cleve.
Vista ventral.

LAMINA VI

 -1 - -

LAMINA VII

Figuras $1-3$ Ceratium falcatiforme Jörgensen.
Figura 1. Vista ventral.
Figura $2 . \quad$ Vista dorsal.
Figura 3. Vista ventral de otro ejemplar en el que se observa el desarrollo del antapical derecho.

Figura 4. Ceratium longirostrum Gourret.
Vista ventral.
Figuras $5-6$ Ceratium incisum (Karsten) Jörgensen.
Figura 5. Vista ventral.

Figura $6 . \quad$ Vista dorsal.

LAMINA VIII

Figuras 1 - 3 Ceratium furca var. furca (Ehrenberg) Claparade et Lachmann

Figura	1.	Formando cadena.
Figura	2.	Vista ventral.
Figura	3.	Vista dorsal.
Figuras	4-5	Ceratium furca, var. eugrammun (Ehrenberg) Schiller.
Figura	4.	Vista dorsal.
Figura	5.	Vista ventral.
Figura	6.	Ceratium pentagonum var. tenerum Jörgensen. Vista ventral.
Figura	7.	Ceratium pentagonum var. subrobustum Jörgensen. Vista dorsal.
Figura	8.	Ceratium gravidum Gourret. Vista ventral.
Figura	9.	Ceratium teres Kofoid. Vista ventral.

LAMINA IX

Figura 1. Ceratium gibberum var. dispar (Pouchet) Sournia.
, Vista dorsal.
Figuras $2-3$ Ceratium gibberum var. subaequale Jörgensen.
Figura $2 . \quad$ Vista ventral.
Figura $3 . \quad$ Vista dorsal.

Figura $4 . \quad$ Ceratium ranipes Cleve.
Vista dorsal (ejemplar con partes terminales de los antapicales rotos).

LAMINA X

Figuras 1 - 2 Ceratium vultur var. sumatranum (Karsten) Steemann Nielsen.
Figura 1. Célula en cadena (vista ventral).
Figura
2. Vista dorsal.

Figura 3. Ceratium lunula Shimper.
Vista ventral.

Figuras $4-5 \quad$ Ceratium hexacanthum Gourret.
Figura $4 . \quad$ Vista ventral.
Figura $5 . \quad$ Vista dorsal.

LAMINA XI

Figuras $1-2$ Ceratium tripos subsp. semipulchellum (Jörgensen) Graham et Bronikovsky.

Figura 1. Vista ventral.
Figura $2 . \quad$ Vista dorsal.

Figura 3. Ceratium macroceros var. gallicum (Kofoid) Sournia.
Vista dorsal.

Figura $4 . \quad$ Ceratium horridum var. horridum Gran.
Vista ventral.

LAMINA XII

Figuras	1-4	Ceratium porrectum (Karsten) Jörgensen.
Figura	1.	Vista ventral.
Figura	2.	Célula en cadena.
Figura	3.	Vista ventral de otro ejemplar (mostrando la membrana a ambos lados del cuerno apical y el engrosamiento de los antapicales.
Figura	4.	Vista dorsal.
Figura	5.	Ceratium tripos forma tripodioides (Jörgensen) Paulsen. Vista ventral.

LAMINA XIII

Figuras $1-2 . \quad$ Ceratium trichoceros (Ehrenberg) Kofoid.
Figura $1 . \quad$ Vista ventral.
Figura $2 . \quad$ Vista dorsal.

Figuras 3-4. Ceratium dens Ostenfeld et Schmidt
Figura $3 . \quad$ Vista ventral.
Figura $4 . \quad$ Vista dorsal.

LAMINA XIV

Figuras $1-3$. Ceratocorys horrida Stein.
Figuras $\quad 1$ - $2 . \quad$ Vista lateral derecha.

Figura 3. Vista apical mostrando la epiteca.

Figuras 4 - 6. Dinophysis caudata Saville-Kent.
Figuras $\quad 4$ - 5. Vista lateral derecha.
Figura 6. Célula en división.

Figura 7. Dinophysis shuetii Murray and Whitting.
Vista lateral derecha.

Figura 8. Dinophysis ovum Schütt
Vista lateral derecha.

LAMINA XIV

LAMINA XV .

Figuras 1-3. Diplopeltopsis minor (Paulsen) Pavillard.

Figura	1.	Vista apical mostrando las plácas epitecales.
Figura	2,	Vista ventral de un ejemplar con bandas de sutura anchas.
Figura	3.	Vista antapical donde se puede observar las placas hipotecales.

Figuras $4-6$. Diplopelta asymmetrica Mangin.
Figura 4. Vista apical observándose las placas epitecales.
Figura 5. Vista ventral.
Figura 6. Vista antapical mostrando las placas de la hipoteca.

Figuras $\quad 7-8 . \quad$ Diplopeltopsis minor (Paulsen) Pavillard.
Vista ventral de dos individuos en los cuales no se ha hecho la destrucción del contenido celular con el hipoclorito de sodio.

Figura 9. Exuviaella compressa Ostenfeld.

Figuras $10-12$. Goniodoma sphaericum Murray and Whitting.
Figura $\quad 10 . \quad$ Vista apical.
Figura 11. Vista ventral.
Figura 12. Vista antapical.

Figuras 13 - 16. Goniodoma polyedricum (Pouchet) Jörgensen.
Figura $13 . \quad V i s t a ~ a p i c a l$.
Figuras $14-15$. Vista de dos ejemplares en posición ventral.
Figura $\quad 16 . \quad$ Vista antapical.

4

7

13

5

11

12

14

15

16

LAMINA XVI.

Figuras	1-3.	Gonyaulax pacifica Kofoid.
Figuras	1-2.	Vista lateral izquierda.
Figura	3.	Vista dorsal izqujerda.
Figuras	4-5.	Gonyaulax polygramma Stein.
Figura	4.	Vista ventral.
Figura	5.	Vista dorsal.
Figura	6.	Gonyaulax diegensis Kofoid. Vista ventral.
Figura	7.	Gonyaulax digitale (Pouchet) Kofoid. Vista ventral.
Figuras	8-9.	Gonyaulax turbynei Murray \& Whitting.
Figura	8.	Vista dorsal.
Figura	9.	Vista ventral.
Figura	10.	Gonyaulax polyedra Stein.
Figura	11.	Ornithocercus quadratus Schütt. Vista lateral izquierda.
Figura	12.	Ornithocercus magnificus Stein. Vista lateral derecha.

1

4

7

10

2

5

8

11

3

12

LAMINA XVII

Figuras	$1-3$.	Ornithocercus Steinii Schūtt.
Figura	1.	Vista lateral.
Figura	2.	Vista lateral de un especimen sin la aleta cingular anterior.
Figura.	3.	Vista apical.
Figura	4.	Ornithocercus thumii (Schmidt) Kofoid and Skogsberg.
Figura	5.	Oxytoxum scolopax Stein.
Figura	6,	Gronyaulax mitra (Schütt) Kofoid.
Figura	7.	Corythodinium elegans (Pavillard) nov. comb.
Figura	8.	Prorocentrum micans Ehrenberg.

LAMINA XVII

LAMINA XVIII

Figura	1.	Dinophysis doryphorum (Stein) Abé.
Figura	2.	Dinophysis argus (Stein) Abé.
Figura	3.	Dinophysis operculoides (Schütt) Balech.
Figura	4.	Dinophysis parvula (Schütt) Balech.
Figura	$5-6$.	Dinophysis rapa (Stein) Abé.
Figura	7.	Dinophysis sp.
Figura	8.	Dinophysis amandula Sournia
Figura	$9-10$.	Protoceratium areolatum Kofoid.
Figura	9.	Vista dorsal.
Figura	10.	Vista ventral.
Figura	11.	Podolampas palmipes Stein.
Figura	12.	Podolampas bipes Stein.
Figura	$13-14$.	Pyrophacus steinii Schiller.
Figura	13.	Vista apical mostrando las placas epitecales.
Figura	14.	Vista antapical observándose las placas hipotecales.

LAMINA XIX

Figuras $1-4 . \quad$ Protoperidinium abei (Paulsen) Balech.
Figura $1 . \quad$ Vista ventral,
Figura 2. , Vista lateral izquierda.
Figura $3 . \quad$ Vista dorsal.
Figura 4. Vista de las placas intercalares.

Figuras 5-11. Protoperidinium brochi (Kofoid y Swezy) Balech.
Figura 5. Vista de la epiteca con algunas de las placas epitecales.
Figuras 6-7. Dos ejemplares en vista ventral mostrando claramente sus placas.
Figuras $\quad 8$ y 10 . Vista ventral de otros dos individuos en los cuales se observa anchas bandas de sutura.

Figura 9. Vista de las placas dorsales de la epiteca.
Figura 11. Vista dorsal de las placas hipotecales.

Figuras $12-13$. Protoperidinium conicum (Gran) Balech.
Figura $12 . \quad$ Vista dorsal.
Figura 13. Vista ventral.

LAMINA XX

Figuras	$1-3$.	Protoperidinium asymmetricum (Karsten) Balech.
Figura	1.	Vista dorsal.
Figura	2	Vista ventral.
Figura	3.	Vista ventral de la epiteca.
Figuras	$4-5$.	Protoperidinium curtipes (Jörgensen) Balech.
Figura	4.	Vista dorsal.
Figura	5.	Vista ventral (ejemplar con bandas de sutura anchas).
Figuras	$6-7$.	Protoperidinium claudicans (Paulsen) Balech.
Figura	6.	Vista ventral.
Figura	7.	Vista dorsal.
Figuras	$8-10$.	Protoperidinium cf. divaricatum Meunier.
Figura	8.	Vista dorsal.
Figura	9.	Vista dorsal de las placas epitecales.
Figura	10.	Vista ventral.

LAMINA XXI

Figuras 1-5. Protoperidinium depressum (Bailey) Balech.
Figuras $\quad 1-2$. Vista ventral.
Figura $3 . \quad$ Vista dorsal mostrando las placas epitecales.
Figura $4 . \quad$ Vista ventral de la epiteca.
Figura $5 . \quad$ Ejemplar en vista ventral.
Figuras 6-8. Protoperidinium divergens (Ehrenberg) Balech.
Figura 6. Vista ventral de un ejemplar con anchas bandas de sutura (individuo con la epiteca desprendida de la hipoteca, por sus lados).

Figura
7. Vista ventral de otro individuo de menor tamaño.

Figura 8. Vista dorsal mostrando las placas de la epiteca e hipoteca.

LAMINA XXI

LAMINA XXII

Figuras	$1 .-5$.	Protoperidinium elegans (Cleve) Balech.
Figura	1.	Vista ventral.
Figura	2.	Vista dorsal.
Figura	3.	Vista ventral mostrando la gran amplitud de la región cingular.
Figura	4.	Vista ventral de un individuo con anchas bandas de sutura.
Figura	5.	Vista ventral de otro individuo.
Figuras	$6-7$.	Protoperidinium steinii (Jörgensen) Balech.
Figura	6.	Vista ventral.
Figura	7.	Vista dorsal.
Figura	8.	Protoperidinium excentricum (Paulsen) Balech.

LAMINA XXIII

Figuras	$1-4$.	Protoperidinium simulum (Paulsen) Balech.
Figura	d.	Placas epitecales.
Figura	2.	Vista ventral.
Figura	3.	Placas de la hipoteca.
Figura	4.	Vista dorsal.
Figuras	$5-6$.	Protoperidinium longipes (Karsten) Balech.
Figura	5.	Vista ventral.
Figura	6.	Vista dorsal.
Figura	$7-8$.	Protoperidinium obtusum Karsten.
Figura	7.	Vista dorsal.
Figura	8.	Vista ventral.
Figuras	$9-11$.	Protoperidinium grande (Kofoid) Balech.
Figuras	9 y 11.	Vista ventral.
Figura	10.	Vista dorsal de un ejemplar con bandas de sutura anchas.

LAMINA XXIII

Figuras $1-4$. Protoperidinium simulum (Paulsen) Balech.
Figura 1. Placas epitecales.
Figura $2 . \quad$ Vista ventral.
Figura 3. Placas de la hipoteca.
Figura $4 . \quad$ Vista dorsal.
Figuras 5-6. Protoperidinium longipes (Karsten) Balech.
Figura 5. Vista ventral.
Figura 6. Vista dorsal.
Figura $\quad 7-8 . \quad$ Protoperidinium obtusum Karsten.
Figura 7. Vista dorsal.
Figura 8. Vista ventral.
Figuras $\quad 9-11$. Protoperidinium grande (Kofoid) Balech.
Figuras $\quad 9$ y 11 . Vista ventral.
Figura
10. Vista dorsal de un ejemplar con bandas de sutura anchas.

LAMINA XXIV

Figuras	$1-2$.	Protoperidinium pedunculatum (Schütt) Balech.
Figuras	$3-4$.	Protoperidinium oblongum (Cleve) Balech.
Figura	3,	Vista ventral.
Figura	4.	Vista dorsal.
Figuras	$5-8$.	Protoperidinium sp.
Figura	5.	Vista ventral.
Figura	6.	Vista dorsal.
Figura	7.	Vista ventral de un ejemplar con bandas de sutura ancha (epiteca despren-
	dida de la hipoteca por acción del hipoclonito de sodio).	
Figura	8.	Vista ventral mostrando algunas placas epitecales.
Figuras	$9-11$.	Protoperidinium pentagonum (Gran) Balech.
Figuras	9 y 11.	Vista ventral.
Figura	10.	Vista dorsal.
Figuras	$12-14$.	Protoperidinium quarnerense (Schröder) Balech.
Figura	12.	Vista ventral.
Figura	13.	Vista epitecales.
Figura	14.	Vista lateral derecha.

LAMINA XXIV

9

10

13

14

LAMINA XXV

Figuras 1-4. Protoperidinium oceanicum (Vanhöffen) Balech.
Figura 1. Vista dorsal.
Figuras 2 - 4. Vista ventral.

Figuras 5 - 10 . Protoperidinium latispinum (Mangin) Balech.
Figura 5. Vista ventral de un ejemplar mostrando bandas de sutura.
Figura 6. Vista ventral.
Figura 7. Placas epitecales dorsales de un individuo hexa.
Figura 8. Placas epitecales ventrales.
Figura $9 . \quad$ Vista dorsal de un ejemplar penta,
Figura 10. Placas epitecales dorsales de un individuo penta.

LAMINA XXVI

Figuras	$1-2$.	Protoperidinium sp.
Figura	1.	Vista dorsal.
Figura	2.	Vista ventral en que se aprecia la sutura entre las placas.
Figuras	$3-4$.	Protoperidinium thorianum (Paulsen) Balech.
Figura	3.	Vista ventral.
Figura	4.	Vista dorsal de la epiteca.
Figuras	$5-7$.	Protoperidinium sp.
Figura	5.	Vista dorsal.
Figura	6.	Vista ventral.
Figura	7.	Vista dorsal de la epiteca.
Figura	8.9.	Protoperidinium punctulatum (Paulsen) Balech.
Figura	8.	Vista dorsal de la epiteca.
Figura	9.	Vista ventral.
Figura	10.	Gonyaulax fragilis (Schütt) Kofoid
Figura	$11-12$.	Protoperidinium sp.
Figura	11.	Vista dorsal.
Figura	12.	Vista ventral.
Figura	14.	Oxytoxum sp.

7

8

11

12

14

LAMINA XXVII

Foto

1a-b. Diplopelta asymmetrica Mangin
a.- vista apical, observándose las placas ventrales y dorsales

X 1300
b.- vista del poro apical

X 6000

Foto 1a

Foto 1b

LAMINA XXVIII

Foto

1c. Diplopelta asymmetrica Mangin placas antapicales

X 1200
2. Protoperidinium simulum (Paulsen) Balech vista dorsal X 2000

Foto 1c

Foto 2

LAMINA XXIX

Foto

3a-c. Gonyaulax digitale (Pouchet) Kofoid
a.- vista ventral

X 1300
b.- vista dorsal

X 1600
c.- vista de las placas epitecales

X 1300

Foto 3a-b

LAMINA XXX

Foto

4a-b. Protoperidinium latispinum (Mangin) Balech X 1200
a.- vista ventral
b.- placas dorsales

Foto 4a

Foto 4b

LAMINA XXXI

Foto

$4 c-d$. Protoperidinium latispinum (Mangin) Balech
c.- vista dorsal X 900
d. - placas epitecales dorsales X 1000

Foto 4c

Foto 4d

LAMINA XXXII

Foto
4e-f. Protoperidinium latispinum (Mangin) Balech
e.- vista lateral izquierda X 1200
f.- placas hipotecales dorsales X 1000

Foto 4 e

Foto f

LAMINA XXXIII

Foto

5. Protoperidinium oceanicum (Vanhoffen) Balech X 1000
vista lateral derecha (lado dorsal)

6a-b. Dinophysis argus (Stein) Abé
a.- vista lateral izquierda $\quad \mathrm{X} \quad 1200$
b.- aleta sulcal X 3000

Foto 5

Foto 6 a-b

LAMINA XXXIV

Foto

$7 a-b \quad$ Protoperidinium pentagonum (Gran) Balech X 800
a.- vista apical
b.- vista ventral, observándose claramente el área sulcal

Foto 7a

Foto 7b

LAMINA XXXV

Foto

7c. Protoperidinium pentagonum (Gran) Balech X 800 vista dorsal de un ejemplar, observándose anchas bandas de sutura.

8a. Protoperidinium obtusum Karsten X 1000 vista ventral

LAMINA XXXV

Foto 7c

Foto 8a

LAMINA XXXVI

Foto

8b-c. Protoperidinium obtusum Karsten
b.- vista ventral X 1000
c.- vista sulcal, observándose además el reticulado de las placas antapicales X 3000

Foto $\mathbf{8 b}$

Foto 8c

